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Abstract

By the relative trace formula approach of Jacquet–Rallis, we prove the global Gan–
Gross–Prasad conjecture for unitary groups under some local restrictions for the automor-
phic representations.
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1 Introduction to Main results

The studies of periods and heights related to automorphic forms and Shimura varieties have
recently received a lot of attention. One pioneering example is the work of Harder–Langlands–
Rapoport ([27]) on the Tate conjecture for Hilbert–Blumenthal modular surfaces. Another
example which motivates the current paper is the Gross–Zagier formula. It concerns the study
of the Neron–Tate heights of Heegner points or CM points: on the modular curve X0pNq
by Gross and Zagier ([23]) in 1980s, on Shimura curves by S. Zhang in 1990’s, completed
by Yuan–Zhang–Zhang ([60]) recently (also cf. Kudla–Rapoport–Yang ([41]), Bruinier–Ono
([6]) etc., in various perspectives). At almost the same time as the Gross–Zagier’s work,
Waldspurger ([56]) discovered a formula that relates certain toric periods to the central value
of L-functions on GL2, the same type L-function appeared in the Gross–Zagier formula. The
Waldspurger formula and the Gross–Zagier formula are crucial in the study of the arithmetic
of elliptic curves. In 1990’s, Gross and Prasad formulated a conjectural generalization of
Waldspurger’s work to higher rank orthogonal groups ([21], [22]) (later refined by Ichino–
Ikeda [31]). Recently, Gan, Gross and Prasad have generalized the conjectures further to
classical groups ([14]) including unitary groups and symplectic groups. The conjectures are
on the relation between period integrals and certain L-values. The main result of this paper
is to confirm their conjecture for unitary groups under some local restrictions. A subsequent
paper [63] is devoted to the refined conjecture for unitary groups.

In the following we describe the main results of the paper in more details.

Gan–Gross–Prasad conjecture for unitary groups. Let E{F be a quadratic extension
of number fields with adeles denoted by A “ AF and AE respectively. Let W be a (non-
degenerate) Hermitian space of dimension n. We denote by UpW q the corresponding unitary
group, as an algebraic group over F . Let G1n “ ResE{FGLn be the restriction of scalar of
GLn from E to F . Let v be a place of F and Fv the completion at v of F . Let πv be an
irreducible admissible representation of UpW qpFvq. We recall the local base change map when
a place v is split or the representation is unramified. If a place v of F is split in E{F , we may
identify G1npFvq with GLnpFvq ˆGLnpFvq and identify UpW qpFvq with a subgroup consisting
of elements of the form pg,t g´1q, g P GLnpFvq, where tg is the transpose of g. Let p1, p2

be the two isomorphisms between UpW qpFvq with GLnpFvq induced by the two projections
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from GLnpFvq ˆ GLnpFvq to GLnpFvq. We define the local base change BCpπvq to be the
representation p˚1πv b p

˚
2πv of G1pFvq where p˚i πv is a representation of GLnpFvq obtained by

the isomorphism pi. Note that when v is split, the local base change map is injective. When v
is non-split and UpW q is unramified at v, there is a local base change map at least when πv is
an unramified representation of UpW qpFvq, cf. [14, §8]. Now let π be a cuspidal automorphic
representation of UpW qpAq. An automorphic representation Π “ bvΠv of G1npAq is called the
weak base change of π if Πv is the local base change of πv for all but finitely many places v
where πv is unramified ([25]). We will then denote it by BCpπq.

Throughout this article, we will assume the following hypothesis on the base change.
Hypothesis p˚q: For all n, W and cuspidal automorphic π, the weak base change BCpπq

of π exists and satisfies the following local–global compatibility at all split places v: the v-
component of BCpπq is the local base change of πv.

Remark 1. This hypothesis should follow from the analogous work of Arthur on endoscopic
classification for unitary groups. For quasi-split unitary groups, this has been recently carried
out by Mok ([43]), whose appendix is relevant to our Hypothesis p˚q. A much earlier result of
Harris–Labesse ([25, Theorem 2.2.2]) shows that the hypothesis is valid if (1) π have super-
cuspidal components at two split places, and (2) either n is odd or all archimedean places of
F are complex.

Let W,W 1 be two Hermitian spaces of dimension n. Then for almost all v, the Hermitian
spaces Wv and W 1

v are isomorphic. We fix an isomorphism for almost every v, which induces
an isomorphism between the unitary groups UpW qpFvq and UpW 1qpFvq. We say that two au-
tomorphic representations π, π1 of UpW qpAq and UpW 1qpAq respectively are nearly equivalent
if πv » π1v for all but finitely many places v of F . Conjecturally, all automorphic representa-
tions in a Vogan’s L-packet ([14, §9, §10]) form precisely a single nearly equivalence class. By
the strong multiplicity one theorem for GLn, if π, π1 are nearly equivalent, their weak base
changes must be the same.

We recall the notion of (global) distinction following Jacquet. Let G be a reductive group
over F and H a subgroup. Let A0pGq be the space of cuspidal automorphic forms on GpAq.
We define a period integral

`H : A0pGq Ñ C

φ ÞÑ

ż

pZGXHqpAqHpF qzHpAq
φphqdh

whenever the integral makes sense. Here ZG denotes the F -split torus of the center of G.
Similarly, if χ is a character of HpF qzHpAq, we define

`H,χpφq “

ż

ZGXHpAqHpF qzHpAq
φphqχphqdh.

For a cuspidal automorphic representation π (viewed as a subrepresentation of A0pGq), we
say that it is (χ-, resp.) distinguished by H if the linear functional `H (`H,χ, resp.) is nonzero
when restricted to π. Even if the multiplicity one fails for G, this definition still makes sense
as our π is understood as a pair pπ, ιq where ι is an embedding of π into A0pGq.
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To state the main result of this paper on the global Gan–Gross–Prasad conjecture ([14,
§24]), we let pW,V q be a fixed pair of (non-degenerate) Hermitian spaces of dimension n and
n`1 respectively, with an embedding W ãÑ V . The embedding W ãÑ V induces an embedding
of unitary groups ι : UpV q ãÑ UpW q. We denote by ∆UpW q the image of UpW q under the
diagonal embedding into UpV q ˆ UpW q. Let π be a cuspidal automorphic representation of
UpV q ˆ UpW q with its weak base change Π. We define (cf. [14, §22])

Lps,Π, Rq “ Lps,Πn`1 ˆΠnq,(1.1)

where Lps,Πn`1 ˆΠnq is the Rankin–Selberg L-function if we write Π “ Πn bΠn`1.
The main result of this paper is as follows, proved in §2.5 and §2.7.

Theorem 1.1. Assume that Hypothesis p˚q holds. Let π be a cuspidal automorphic represen-
tation of UpV q ˆ UpW q. Suppose that

p1q Every archimedean place is split in E{F .

p2q There exist two distinct places v1, v2 (non-archimedean) split in E{F such that πv1 , πv2
are supercuspidal.

Then the following are equivalent

piq The central L-value does not vanish: Lp1{2,Π, Rq ‰ 0.

piiq There exists Hermitian spaces W 1 Ă V 1 of dimension n and n ` 1 respectively, and an
automorphic representation π1 of UpV 1q ˆ UpW 1q nearly equivalent to π, such that π1 is
distinguished by ∆UpW 1q.

Remark 2. Note that we do not assume that the representation π1 occurs with multiplicity one
in the space of cuspidal automorphic forms A0pUpV

1q ˆ UpW 1qq (though this is an expected
property of the L-packet for unitary groups). By π1 we do mean a subspace of A0pUpV

1q ˆ

UpW 1qq.

The theorem confirms the global conjecture of Gan–Gross–Prasad ([14, §24]) for unitary
group under the local restrictions p1q and p2q. The two conditions are due to some technical
issues we now briefly describe. Our approach is by a simple version of Jacquet–Rallis relative
trace formulae (shortened as “RTF” in the rest of the paper). The first assumption is due to
the fact that we only prove the existence of smooth transfer for a p-adic field (cf. Remark 3).
The second assumption is due to the fact that we use a “cuspidal” test function at a split place
and use a test function with nice support at another split place (cf. Remark 4). To remove
the second assumption, one needs the fine spectral expansion of the RTF of Jacquet–Rallis,
which seems to be a very difficult problem on its own. Towards this, there has been the recent
work of Ichino and Yamana on the regularization of period integral [32].

Remark 3. In the archimedean case we have some partial result for the existence of smooth
transfer (Theorem 3.14). If we assume the local–global compatibility of weak base change at
a non-split archimedean place, we may replace the first assumption by the following: if v|8
is non-split, then W,V are positive definite (hence πv is finite dimensional) and

HomUpW qpFvqpπv,Cq ‰ 0.
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Remark 4. In Theorem 1.1, we may weaken the second condition to require only that πv1 is
supercuspidal and πv2 is tempered.

Remark 5. We recall some by-no-means complete history related to this conjecture. In the
lower rank cases, a lot of works have been done on the global Gan–Gross–Prasad conjecture
for orthogonal groups: the work of Waldspurger on SOp2q ˆ SOp3q ([56]), the work of Garrett
([16]), Piatetski-Shapiro–Rallis, Garret–Harris, Harris–Kudla ([24]), Gross–Kudla ([20]), and
Ichino ([30]) on the case of SOp3q ˆ SOp4q or the so-called Jacquet’s conjecture, the work of
Gan–Ichino on some cases of SOp4q ˆ SOp5q ([13]). For the case of higher rank, Ginzburg–
Jiang–Rallis ([18], [19] etc.) prove one direction of the conjecture for some representations in
both the orthogonal and the unitary cases.

Remark 6. The original local Gross–Prasad conjecture ([21],[22], for the orthogonal case) for
p-adic fields has also been resolved in a series of papers by Waldspurger and Mœglin ([59], [44]
etc.). It is extended to the unitary case ([14]) by Beuzart-Plessis ([7], [8]). But in our paper we
will not need this. According to this local conjecture of Gan–Gross–Prasad for unitary groups
and the expected multiplicity-one property of π in the cuspidal spectrum, such relevant ([14])
pair pW 1, V 1q and π1 in Theorem 1.1 should be unique (if it exists).

Remark 7. Ichino and Ikeda stated a refinement of the Gross–Prasad conjecture in [31] for
the orthogonal case. N. Harris ([26]) extended the refinement to the unitary case of the
Gan–Gross–Prasad conjecture. The approach of trace formula and the major local ingredients
in this paper will be used in a subsequent paper ([63]) to establish the refinement of the
Gan–Gross–Prasad conjecture for unitary groups under certain local conditions.

An application to non-vanishing of central L-values. We have an application to the
existence of non-vanishing twist of Rankin–Selberg L-function. It may be of independent
interest.

Theorem 1.2. Let E{F be a quadratic extension of number fields such that all archimedean
places are split. Let σ be a cuspidal automorphic representation of GLn`1pAEq, n ě 1. Assume
that σ is a weak base change of an automorphic representation π of some unitary group UpV q
where πv is locally supercuspidal at two split places v of F . Then there exists a cuspidal
automorphic representation τ of GLnpAEq such that the central value of the Rankin–Selberg
L-function does not vanish:

L

ˆ

1

2
, σ ˆ τ

˙

‰ 0.

This is proved in §2.8.

Flicker–Rallis conjecture. Let η “ ηE{F be the quadratic character of FˆzAˆ associated
to the quadratic extension E{F by class field theory. By abuse of notation, we will denote by
η the quadratic character η ˝ det (det being the determinant map) of GLnpAq.

Conjecture 1.3 (Flicker–Rallis, [11]). An automorphic cuspidal representation Π on GLnpAEq
is a weak base change from a cuspidal automorphic π on some unitary group in n-variables if
and only if it is distinguished (ηE{F -distinguished, resp.) by GLn,F if n is odd (even, resp.).
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Another result of the paper is to confirm one direction of Flicker-Rallis conjecture under
the same local restrictions as in Theorem 1.1. In fact, this result is used in the proof of
Theorem 1.1.

Theorem 1.4. Let π be a cuspidal automorphic representation of UpW qpAq satisfying:

p1q Every archimedean place is split in E{F .

p2q There exist two distinct places v1, v2 (non-archimedean) split in E{F such that πv1 , πv2
are supercuspidal.

Then the weak base change BCpπq is (η-, resp.) distinguished by GLn,F if n is odd (even,
resp.).

This is proved in §2.6.

Remark 8. If Π is distinguished by GLn,F , then Π is conjugate self-dual ([11]). Moreover, the
partial Asai L-function has a pole at s “ 1 if and only if Π is distinguished by GLn,F ([10],
[12]). In [17], it is further proved that if the central character of Π is distinguished, then Π is
conjugate self-dual if and only if Π is distinguished (resp., η-distinguished) if n is odd (resp.,
even). 1

We briefly describe the contents of each section. In section 2, we prove the main theorems
assuming the existence of smooth transfer. In section 3 we reduce the existence of smooth
transfer on groups to the same question on “Lie algebras” (an infinitesimal version). In section
4, we show the existence of smooth transfer on Lie algebras for a p-adic field .

Acknowledgements. The author would like to thank A. Aizenbud, D. Goldfeld, B. Gross,
A. Ichino, H. Jacquet, D. Jiang, E. Lapid, Y. Liu, D. Prasad, Y. Sakellaridis, B. Sun, Y. Tian,
A. Venkatesh, H. Xue, X. Yuan, Z. Yun, S. Zhang, X. Zhu for their help during the preparation
of the paper. He also thanks the Morningside Center of Mathematics of Chinese Academy
of Sciences, the Mathematical Science Center of Tsinghua University for their hospitality and
support where some part of the paper was written. Finally, the author thanks the anonymous
referee for several useful comments.

Notations and conventions. We list some notations and convention used throughout this
paper. The others will be introduced as we meet them.

Let F be a number field or a local field, and let E be a semisimple quadratic F -algebra,
and moreover, a field if F is a number field.

For a smooth variety X over a local field F we endow XpF q with the analytic topology. We
denote by C8c pXpF qq the space of smooth (locally constant if F is non-archimedean) functions
with compact support.

Some groups are as follows:

1As Lapid points out to the author, the work of Ginzburg–Rallis–Soudry on automorphic descent already
shows that for a cuspidal Π of GLnpAEq, its Asai L-function has a pole at s “ 1 if and only if Π is the base
change from some π on a unitary group. In addition, the work of Arthur, extended to unitary groups, should
also prove this. But our proof of Theorem 1.4 is different from theirs and may be of independent interest.
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• The general linear case. We will consider the F -algebraic group

G1 “ ResE{F pGLn`1 ˆGLnq(1.2)

and two subgroups: H 11 is the diagonal embedding of ResE{FGLn (where GLn is embed-
ded into GLn`1 by g ÞÑ diagrg, 1s) and H 12 “ GLn`1,F ˆGLn,F embedded into G1 in the
obvious way. In this paper for an F -algebraic group H, we will denote by ZH the center
of H. We note that ZG1 X ZH 11 is trivial.

• The unitary case. We will consider a pair of Hermitian spaces over the quadratic exten-
sion E of F : V and a codimension one subspace W . Suppose that W is of dimension n.
Without loss of generality, we may and do always assume

V “W ‘ Eu,(1.3)

where u has norm one: pu, uq “ 1. In particular, the isometric class of V is determined
by W . We have an obvious embedding of unitary groups UpW q ãÑ UpV q. Let

G “ GW “ UpV q ˆ UpW q(1.4)

and let ∆ : UpW q ãÑ G be the diagonal embedding. Denote by H “ ∆UpW q (or HW to
emphasize the dependence on W ) the image of ∆, as a subgroup of G.

For a number field F , let

η “ ηE{F : FˆzAˆ Ñ t˘1u(1.5)

be the quadratic character associated to E{F by class field theory. By abuse of notation we
will also denote by η the character of H 12pAq defined by ηphq :“ ηpdetph1qq (ηpdetph2qq, resp.)
if h “ ph1, h2q P GLn`1pAq ˆGLnpAq and n is odd (even, resp.). Fix a character

η1 : EˆzAˆE Ñ Cˆ(1.6)

(not necessarily quadratic) such that its restriction

η1|Aˆ “ η.

We similarly define the local analogue ηv, η
1
v.

Let F be a field of character zero. For a reductive group H acting on an affine variety X,
we say that a point x P XpF q is:

• H-semisimple if Hx is Zariski closed in X (when F is a local field, equivalently, HpF qx
is closed in XpF q for the analytic topology, cf. [2, Theorem 2.3.8]).

• H-regular if the stabilizer Hx of x has the minimal dimension.

If no confusion, we will simply use the words “semisimple” and “regular”. We say that x is
regular semisimple if it is regular and semisimple. In this paper, we will be interested in the
following two cases
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• X “ G is a reductive group and H “ H1 ˆH2 is a product of two reductive subgroups
of G where H1 (H2, resp.) acts by left (right, resp.) multiplication.

• X “ V is a vector space (considered as an affine variety) with an action by a reductive
group H.

For h P H and x P X, we will usually write (especially in an orbital integral)

xh “ h ¨ x(1.7)

for the h-translation of x.
For later use, we also recall that the categorical quotient of X by H (cf. [2], [45]) consists

of a pair pY, πq where Y is an algebraic variety over F and π : X Ñ Y is an H-morphism
with the following universal property: for any pair pY 1, π1q with an H-morphism π1 : X Ñ Y 1,
there exists a unique morphism φ : Y Ñ Y 1 such that π1 “ φ ˝ π. If such a pair exists, then it
is unique up to a canonical isomorphism. When X is affine (in all our cases), the categorical
quotient always exists. Indeed we may construct as follows. Consider the affine variety

X{{H :“ SpecOpXqH

together with the obvious quotient morphism

π “ πX,H : X Ñ SpecOpXqH .

Then pX{{H,πq is a categorical quotient of X by H. By abuse of notation, we will also let π
denote the induced map XpF q Ñ pX{{HqpF q if no confusion arises.

Below we list some other notations.

• Mn: nˆ n-matrices.

• Fn (Fn, resp.): the n-dimensional F -vector space of row (column, reps.) vectors.

• e “ en`1 “ p0, ...0, 1q P Fn`1 is a 1ˆ pn` 1q-row vector and e˚ P Fn`1 its transpose.

• For a p-adic local field F , we denote by $ “ $F a fixed uniformizer.

• For E{F be a (separable) finite extension, we denote by tr “ trE{F : E Ñ F the trace
map and N “ NE{F : Eˆ Ñ Fˆ the norm map. Let E1 (NEˆ, resp.) be the kernel (the
image, resp.) of the norm map.

2 Relative trace formulae of Jacquet–Rallis

2.1 Orbital integrals

We first introduce the local orbital integrals appearing in the relative trace formulae of
Jacquet–Rallis. We refer to [62, sec. 2] on important properties of orbits (namely, double
cosets). Later on in §3 we will also recall some of them. We now let F be a local field of char-
acteristic zero. And let E be a quadratic semisimple F -algebra, i.e., E is either a quadratic
field extension of F or E » F ˆ F .
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The general linear case. We start with the general linear case. If an element γ P G1pF q
is H 11 ˆH 12-regular semisimple, for simplicity we will say that it is regular semisimple. For a
regular semisimple γ P G1pF q and a test function f 1 P C8c pG

1pF qq, we define its orbital integral
as:

(2.1) Opγ, f 1q :“

ż

H 11pF q

ż

H 12pF q
f 1ph´1

1 γh2qηph2qdh1dh2.

This depends on the choice of Haar measure. But in this paper, the choice of measure is
not crucial since we will only concern non-vanishing problem. In the following, we always
pre-assume that we have made a choice of a Haar measure on each group.

The integral (2.1) is absolutely convergent, and η-twisted invariant in the following sense

(2.2) Oph´1
1 γh2, f

1q “ ηph2qOpγ, f
1q, h1 P H

1
1pAq, h2 P H

1
2pAq.

We may simplify the orbital integral as follows. Identify H 11zG
1 with ResE{FGLn`1. Let

Sn`1 be the subvariety of ResE{FGLn`1 defined by the equation ss̄ “ 1 where s̄ denotes
the entry-wise Galois conjugation of s P ResE{FGLn`1. By Hilbert Satz-90, we have an
isomorphism of two affine varieties

ResE{FGLn`1{GLn`1,F » Sn`1,

induced by the following morphism ν between two F -varieties:

ν : ResE{FGLn`1 Ñ Sn`1(2.3)

g ÞÑ gḡ´1.(2.4)

Moreover, we have a homeomorphism on the level of F -points:

GLn`1pEq{GLn`1pF q » Sn`1pF q.(2.5)

We may integrate f 1 over H 11pF q to get a function on ResE{FGLn`1pF q:

f̄ 1pxq :“

ż

H 11pF q
f 1ph1px, 1qqdh1, x P ResE{FGLn`1pF q.

We first assume that n is odd. Then the character η on H 12 is indeed only nontrivial on
the component GLn`1,F . We may introduce a function f̃ 1 on Sn`1pF q as follows: when
νpxq “ s P Sn`1pF q, we define

f̃ 1psq :“

ż

GLn`1pF q
f̄ 1pxgqη1pxgqdg.

Then f̃ 1 P C8c pSn`1pF qq and all functions in C8c pSn`1pF qq arise this way. Now it is easy to
see that for γ “ pγ1, γ2q P G

1pF q “ GLn`1pEq ˆGLnpEq:

Opγ, f 1q “ η1pdetpγ1γ
´1
2 qq

ż

GLnpF q
f̃ 1ph´1shqηphqdh, s “ νpγ1γ

´1
2 q.(2.6)
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If n is even, we simply define in the above

f̃ 1psq :“

ż

GLn`1pF q
f̄ 1pxgqdg, νpxq “ s.

We then have for γ “ pγ1, γ2q

Opγ, f 1q “

ż

GLnpF q
f̃ 1vph

´1shqηphqdh, s “ νpγ1γ
´1
2 q.(2.7)

An element γ “ pγ1, γ2q P G1pF q is H 11 ˆ H 12-regular semisimple if and only if s “
νpγ1γ

´1
2 qq P Sn`1pF q is GLn,F -regular semisimple. We also recall that, by [51, §6], an ele-

ment s P Sn`1pF q is GLn,F -regular semisimple if and only if the following discriminant does
not vanish

∆psq :“ detpesi`je˚qi,j“0,1,...,n ‰ 0,(2.8)

where e “ p0, ...0, 1q is a row vector and e˚ its transpose.
To deal with the center of G1, we will also need to consider the action of H :“ ZG1H

1
1ˆH

1
2

on G1. Though the categorical quotient of G1 by ZG1H
1
1 ˆH 12 exists, we are not sure how to

explicitely write down a set of generators of invariant regular functions nor how to determine
when γ is ZG1H

1
1 ˆH 12-regular semisimple. But we may give an explicit Zariski open subset

consisting of ZG1H
1
1ˆH

1
2-regular semisimple elements. It suffices to work with the space Sn`1.

Then we have the induced action of ZG1 ˆGLn,F on Sn`1:

• h P GLn,F acts by the conjugation,

• z “ pz1, z2q P ZG1 » pE
ˆq2 acts by Galois-conjugate conjugation by z´1

2 z1:

z ˝ s “ pz´1
2 z1qspz

´1
1 z2q.

The two subgroups ZGLn`1,F
Ă ZG1 and tpp1, z2q, z2q P ZG1 ˆ GLn,F |z2 P ZGLn,F u clearly act

trivially on Sn`1. We let Z0 denote their product. We may write

s “

ˆ

A b
c d

˙

P Sn`1pF q,

where A PMnpEq, b PMn,1pEq, c PM1,npEq, d P E. Then we have the following ZG1 ˆGLn,F -
invariant polynomials on Sn`1:

NE{F ptrpAqq, NE{Fd.(2.9)

We say that s is Z-regular semisimple if s is GLn-regular semisimple and the above two
invariants are invertible in E. When E is a field, this is equivalent to:

trpAq ‰ 0, d ‰ 0, ∆psq ‰ 0.

Otherwise we understand “‰ 0” as “P Eˆ” in these inequalities. The Z-regular semisimple
locus, denoted by Z, clearly forms a Zariski open dense subset in Sn`1.
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Lemma 2.1. If s is Z-regular semisimple, the stabilizer of s is precisely Z0 and its ZG1 ˆ
GLn,F -orbit is closed. In particular, a Z-regular semisimple element is ZG1 ˆ GLn,F -regular
semisimple.

Proof. Suppose that pz, hq ˝ s “ s. As trpAq ‰ 0, d ‰ 0, up to modification by elements in Z0,
we may assume that z “ 1. Then the first assertion follows from the fact that the stabilizer
of s is trivial for the GLn-action on Sn`1 when ∆psq ‰ 0. When trpAq ‰ 0, d ‰ 0, besides
NE{F ptrpAqq,NE{Fd, the following are also ZG1 ˆGLn,F -invariant:

tr^i A

ptrpAqqi
,

cAjb

ptrpAqqj`1d
, 1 ă i ď n, 0 ď j ď n´ 1.

Then we claim that two Z-reglar semisimple s, s1 are in the same ZG1 ˆ GLn,F -orbit if and
only if they have the same invariants (listed above). One direction is obvious. For the other
direction, we now assume that s, s1 are Z-reglar semisimple and have the same invariants. In
particular, the values of NE{F ptrpAqq,NE{Fd are the same. Replacing s1 by zs1 for a suitable
z P ZG1 , we may assume that s1 and s have the same trpAq and d. Then s, s1 have the same
values of tr^i A, 1 ď i ď n and cAjb, 0 ď j ď n´ 1. Then by [62, §2], s and s1 are conjugate
by GLn,F since they are also GLn,F -regular semisimple. This proves the claim. Therefore, the
ZG1 ˆGLn,F -orbit of s consists of s P Sn`1 such that for a fixed tuple pα, β, αi, βjq

NE{F ptrpAqq “ α,NE{F “ β,

and

αi “
tr^i A

ptrpAqqi
, βj “

cAjb

ptrpAqqj`1d
1 ă i ď n, 0 ď j ď n´ 1.

The second set of conditions can be rewritten as

tr^i A´ αiptrpAqq
i “ 0, cAjb´ βjptrpAqq

j`1d “ 0,

for 1 ă i ď n, 0 ď j ď n´ 1. This shows that the ZG1 ˆGLn,F -orbit of s is Zariski closed.

Let χ1 be a character of the center ZG1pF q that is trivial on ZH 12pF q. If an element γ P G1pF q
is Z-regular semisimple, we define the χ1-orbital integral of f 1 P C8c pG

1pF qq as:

(2.10) Oχ1pγ, f
1q :“

ż

H 11pF q

ż

ZH12
pF qzH 12pF q

ż

ZG1 pF q
f 1ph´1

1 z´1γh2qχ
1pzqηph2qdzdh1dh2.

The integral is absolutely convergent.

The unitary case. We now consider the unitary case. Similarly, we will simply use the
term “regular semisimple” relative to the action of H ˆ H on G “ UpV q ˆ UpW q. For a
regular semisimple δ P GpF q and f P C8c pGpF qq, we define its orbital integral

(2.11) Opδ, fq “

ż

HpF qˆHpF q
fpx´1δyqdxdy.

11



The integral is absolutely convergent. Similar to the general linear case, we may simplify the
orbital integral Opδ, fq. We introduce a new function on UpV qpF q:

(2.12) f̄pgq “

ż

UpW qpF q
fppg, 1qhqdh, g P UpV qpF q.

Then for δ “ pδn`1, δnq P GpF q, we may rewrite (2.11) as

Opδ, fq “

ż

UpW qpF q
f̄py´1pδn`1δ

´1
n qyqdy.(2.13)

We thus have the action of UpW q on UpV q by conjugation. An element δ “ pδn`1, δnq P GpF q
is HˆH-regular semisimple if and only if δn`1δ

´1
n P UpV qpF q is UpW q-regular semisimple for

the conjugation action. We recall that, by [62, §2], an element δ P UpV qpF q is UpW q-regular
semisimple if and only if the vectors δiu P V , i “ 0, 1, ..., n, form an E-basis of V , where u is
any non-zero vector in the line WK Ă V (cf. (1.3)). To deal with the center, we also need to
consider the action of the center ZG. Similar to the general linear case, we define the notion
of Z-regular semisimple in terms the invariants in (2.9) where we view δ P UpV q as an element
in GLpV q. Then Lemma 2.1 easily extends to the unitary case. Let χ be a character of the
center ZGpF q. If an element δ P GpF q is Z-regular semisimple, we define the χ-orbital integral
as:

(2.14) Oχpδ, fq :“

ż

HpF qˆHpF q

ż

ZGpF q
fpx´1zδyqχpzq dz dx dy.

The integral is absolutely convergent.

2.2 RTF on the general linear group

Now we recall the construction of Jacquet–Rallis’ RTF on the general linear side ([39]). Let
E{F be a quadratic extension of number fields. Fix a Haar measure on ZG1pAq, H 1ipAq (i “ 1, 2)
etc. and the counting measure on ZG1pF q, H

1
ipF q (i “ 1, 2) etc..

For f 1 P C8c pG
1pAqq, we define a kernel function

Kf 1px, yq “
ÿ

γPG1pF q

f 1px´1γyq.

For a character χ1 of ZG1pF qzZG1pAq, we define the χ1-part of the kernel function

Kf 1,χpx, yq “

ż

ZG1 pF qzZG1 pAq

ÿ

γPGpF q

f 1px´1z´1γyqχpzqdz.

We then consider a distribution on G1pAq:

Ipf 1q “

ż

H 11pF qzH
1
1pAq

ż

H 12pF qzH
1
2pAq

Kf 1ph1, h2qηph2qdh1dh2.(2.15)
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Similarly, for a character χ1 of ZG1pF qzZG1pAq that is trivial on ZH 12pAq, we define the χ1-part
of the distribution

Iχ1pf
1q “

ż

H 11pF qzH
1
1pAq

ż

ZH12
pAqH 12pF qzH 12pAq

Kf 1,χph1, h2qηph2qdh1dh2.(2.16)

For the convergence of the integral, we will consider a subset of test functions f 1. We say
that a function f 1 P C8c pG

1pAqq is nice with respect to χ1 if it is decomposable f 1 “ bvf
1
v and

satisfies:

• For at least one place v1, the test function f 1v1 P C8c pG
1pFv1qq is essentially a matrix

coefficient of a supercuspidal representation with respect to χ1v1 . This means that the
function on GpFv1q

f 1v1,χ1v1
pgq :“

ż

ZGpFv1 q
f 1v1pgzqχ

1
v1pzqdz

is a matrix coefficient of a supercuspidal representation of GpFv1q. In particular, we
require that v1 is non-archimedean.

• For at least one place v2 ‰ v1, the test function f 1v2 is supported on the locus of Z-regular
semisimple elements of G1pFv2q. The place v2 is not required to be non-archimedean.

Lemma 2.2. Let χ1 be a (unitary) character of ZG1pF qzZG1pAq that is trivial on ZH 12pAq.
Suppose that f 1 “ bvf

1
v is nice with respect to χ1.

• As a function on H 11pAq ˆH 12pAq, Kf 1ph1, h2q is compactly supported modulo H 11pF q ˆ
H 12pF q. In particular, the integral Ipf 1q converges absolutely.

• As a function on H 11pAqˆH 12pAq, Kf 1,χ1ph1, h2q is compactly supported modulo H 11pF qˆ
H 12pF qZH 12pAq. In particular, the integral Iχ1pf

1q converges absolutely.

Proof. The kernel function Kf 1 can be written as
ÿ

γPH 11pF qzG
1pF q{H 12pF q

ÿ

pγ1,γ2qPH 11pF qˆH
1
2pF q

f 1ph´1
1 γ´1

1 γγ2h2q,

where the outer sum is over a complete set of representatives γ of regular semisimple H 11pF qˆ
H 12pF q-orbits. First we claim that in outer sum only finite many terms have non-zero con-
tribution. Let Ω Ă G1pAq be the support of f 1. Note that the invariants of G1pAq defines a
continuous map from G1pAq to XpAq where X is the categorical quotient of G1 by H 11 ˆH 12.
So the image of the compact set Ω will be a compact set in XpAq. On the other hand the
image of h´1

1 γ´1
1 γγ2h2 is in the discrete set XpF q. Moreover for a fixed x P XpF q there is at

most one H 11pF q ˆH 12pF q double coset with given invariants. This shows the outer sum has
only finite many non-zero terms.

It remains to show that for a fixed γ0 P G
1pF q, the function on H 11pAq ˆ H 12pAq defined

by ph1, h2q ÞÑ f 1ph´1
1 γ0h2q has compact support. Consider the continuous map H 11pAq ˆ

H 12pAq Ñ G1pAq given by ph1, h2q ÞÑ h´1
1 γ0h2. When γ is regular semisimple, this defines

an homeomorphism onto a closed subset of G1pAq. This implies the desired compactness and
completes the proof the first assertion. The second one is similarly proved using the Z-regular
semi-simplicity.
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The last lemma allows us to decompose the distribution Ipf 1q in (2.15) into a finite sum
of orbital integrals

Ipf 1q “
ÿ

γ

Opγ, f 1q,

where the sum is over regular semisimple γ P H 11pF qzG
1pF q{H 12pF q and

(2.17) Opγ, f 1q :“

ż

H 11pAq

ż

H 12pAq
f 1ph´1

1 γh2qηph2q dh1 dh2.

If f 1 “ bvf
1
v is decomposable, we may decompose the orbital integral as a product of local

orbital integrals:
Opγ, f 1q “

ź

v

Opγ, f 1vq,

where Opγ, f 1vq is defined in (2.1). Similarly, we have a decomposition for the χ1-part Iχ1pf
1q

in (2.16)

Iχ1pf
1q “

ÿ

γ

Oχ1pγ, f
1q,

where the sum is over regular semisimple γ P ZG1pF qH
1
1pF qzG

1pF q{H 12pF q.
For a cuspidal automorphic representation Π of G1pAq whose central character is trivial on

ZH 12pAq, we define a (global) spherical character

IΠpf
1q “

ÿ

φPBpΠq

˜

ż

H 11pF qzH
1
1pAq

Πpf 1qφpxqdx

¸

¨

˝

ż

ZH12
pAqH 12pF qzH 12pAq

φpxqdx

˛

‚,(2.18)

where the sum is over an orthonormal basis BpΠq of Π.
We are now ready to state a simple RTF for nice test functions on G1pAq:

Theorem 2.3. Let χ1 be a (unitary) character of ZG1pF qzZG1pAq that is trivial on ZH 12pAq.
If f 1 P C8c pG

1pAqq is nice with respect to χ1, then we have an equality

ÿ

γ

Oχ1pf
1q “

ÿ

Π

IΠpf
1q,

where the sum on the left hand side runs over all Z-regular semisimple

γ P H 11pF qzG
1pF q{ZGpF qH

1
2pF q

and the sum on the right hand side runs over all cuspidal automorphic representations Π of
G1pAq with central character χ1.

Proof. It suffices to treat the spectral side. Let ρ be the right translation of G1pAq on L2pG1, χ1q
(cf. [50] for this notation). Since f 1v1 is essentially a matrix coefficient of a super-cuspidal
representation, by [50, Proposition 1.1], ρpfq acts by zero on the orthogonal complement of

14



the cuspidal part L2
0pG

1, χ1q. We obtain that the kernel function is an absolute convergent
sum

Kf 1,χ1px, yq “
ÿ

φ

ρpf 1qφpxqφpyq,(2.19)

where the sum runs over an orthonormal basis of the cuspidal part L2
0pG

1, χ1q. We may further
assume that the φ’s are all in A0pG

1, χ1q. This yields an absolutely convergent sum

Iχ1pf
1q “

ÿ

Π

IΠpf
1q,

where Π runs over automorphic cuspidal representations ofG1pAq with central character χ1.

2.3 RTF on unitary groups

We now recall the RTF of Jacquet–Rallis in the unitary case. For f P C8c pGpAqq we consider
a kernel function

Kf px, yq “
ÿ

γPGpF q

fpx´1γyq,

and a distribution

Jpfq :“

ż

HpF qzHpAq

ż

HpF qzHpAq
Kf px, yqdxdy.

Fix a (necessarily unitary) character χ “ pχn`1, χnq : ZGpF qzZGpAq Ñ Cˆ. We introduce the
χ-part of the kernel function

Kf,χpx, yq “

ż

ZGpF qzZGpAq
Kf pzx, yqχpzqdz “

ż

ZGpF qzZGpAq
Kf px, z

´1yqχpzqdz,

and a distribution

Jχpfq :“

ż

HpF qzHpAq

ż

HpF qzHpAq
Kf,χpx, yqdxdy.

Note that the center ZG is an anisotropic torus and its intersection with H is trivial.
Similar to the general linear case, we will consider a simple RTF for a subset of test

functions f P C8c pGpAqq. We say that a function f P C8c pGpAqq is nice with respect to χ if
f “ bvfv satisfies

• For at least one place v1, the test function fv1 is essentially a matrix coefficient of a
supercuspidal representation with respect to χv1 . This means that the function

fv1,χv1 pgq “

ż

ZGpFv1 q
fv1pgzqχv1pzqdz

is a matrix coefficient of a supercuspidal representation of GpFv1q. In particular, we
require that v1 is non-archimedean.
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• For at least one place v2 ‰ v1, the test function fv2 is supported on the locus of Z-regular
semisimple elements of GpFv2q. The place v2 is not required to be non-archimedean.

For a cuspidal automorphic representation π of GpAq, we define a (global) spherical char-
acter as a distribution on GpAq:

Jπpfq “
ÿ

φPBpπq

˜

ż

HpF qzHpAq
πpfqφpxqdx

¸˜

ż

HpF qzHpAq
φpxqdx

¸

,(2.20)

where the sum is over an orthonormal basis Bpπq of π.
We now ready to state a simple RTF for nice test functions on GpAq:

Theorem 2.4. Let χ be a (unitary) character of ZGpF qzZGpAq. If f is a nice test function
with respect to χ, then Jχpfq is equal to

ÿ

δ

Oχpδ, fq “
ÿ

π

Jπpfq,

where the sum in left hand side runs over all regular simisimple orbits

δ P HpF qzGpF q{ZGpF qHpF q,

and the right hand side runs over all cuspidal automorphic representations π with central
character χ.

Here in the right hand side, by a π we mean a sub-representation of the space of cuspidal
automorphic forms. So, a priori, two such representations may be isomorphic (as we don’t
know yet the multiplicity one for such a π, which is expected to hold by the Langlands–Arthut
classification).

Proof. The proof follows the same line as that of Theorem 2.3 in the general linear case.

2.4 Comparison: fundamental lemma and transfer

Smooth transfer. We first recall the matching of orbits without proof. The proof can
be found [51] and [62, §2.1]. Now the field F is either a number field or a local field of
characteristic zero. We will view both Sn`1 and UpV q as closed subvarieties of ResE{FGLn`1.
In the case of UpV q, this depends on a choice of an E-basis of V . Even though such choice is
not unique, the following notion is independent of the choice: we say that δ P UpV qpF q and
s P Sn`1pF q match if s and δ (both considered as elements in GLn`1pEq) are conjugate by an
element in GLnpEq. Then it is proved in [62, §2] that this defines a natural bijection between
the set of regular semisimple orbits of Sn`1pF q and the disjoint union of regular semisimple
orbits of UpV q where V “ W ‘ Eu (with pu, uq “ 1) and W runs over all (isometric classes
of) Hermitian spaces over E.

Now let E{F be number fields. To state the matching of test functions, we need to
introduce a “transfer factor”: it is a compatible family of functions tΩvuv indexed by all
places v of F , where Ωv is defined on the regular semisimple locus of Sn`1pFvq, and they
satisfy:
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• If s P Sn`1pF q is regular semisimple, then we have a product formula

ź

v

Ωvpsq “ 1.

• For any h P GLnpFvq and s P Sn`1pFvq, we have Ωvph
´1shq “ ηphqΩvpsq.

The transfer factor is not unique. But we may construct one as follows. We have fixed a
character η1 : EˆzAˆE Ñ Cˆ (not necessarily quadratic) such that its restriction η1|Aˆ “ η.
We define

Ωvpsq :“ η1vpdetpsq´rpn`1q{2s detpe, es, ..., esnqq.(2.21)

Here e “ en`1 “ p0, ..., 0, 1q and pe, es, ..., esnq is the pn` 1q ˆ pn` 1q-matrix whose i-th row
is esi´1. It is easy to verify that such a family tΩvuv defines a transfer factor.

We also extend this to a transfer factor on G1, by which we mean a compatible family of
functions (to abuse notation) tΩvuv on the regular semisimple locus of G1pFvq, indexed by all
places v of F , such that

• If γ P G1pF q is regular semisimple, then we have a product formula

ź

v

Ωvpγq “ 1.

• For any hi P H
1
ipFvq and γ P G1pFvq, we have Ωvph1γh2q “ ηph2qΩvpγq.

We may construct it as follows. Write γ “ pγ1, γ2q P G
1pFvq and s “ νpγ1γ

´1
2 q P Sn`1pFvq. If

n is odd, we set:

Ωvpγq :“ η1vpdetpγ1γ
´1
2 qqη1vpdetpsq´pn`1q{2 detpe, es, ..., esnqq,(2.22)

and if n is even, we set:

Ωvpγq :“ η1vpdetpsq´n{2 detpe, es, ..., esnqq.(2.23)

For a place v of F , we consider f 1 P C8c pSn`1pFvqq and the tuple pfW qW , fW P C8c pUpV qpFvqq
indexed by the set of all (isometric classes of) Hermitian spaces W over Ev “ E b Fv, where
we set V “ W ‘ Evu with pu, uq “ 1 as in (1.3). In particular, V is determined by W . We
say that f 1 P C pSnpFvqq and the tuple pfW qW are (smooth) transfer of each other if

ΩvpsqOps, f
1q “ Opδ, fW q,

whenever a regular semisimple s P Sn`1pFvq matches a δ P UpV qpFvq.
Similarly we extend the definition to (smooth) transfer between elements in C8c pG

1pFvqq
and those in C8c pG

W pFvqq, where we use GW as in (1.4) to indicate the dependence on W .
It is then obvious that the existence of the two transfers are equivalent. Similarly, we may
extend the definition of (smooth) transfer to test functions on G1pAq and GW pAq.
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For a split place v, the existence of transfer is almost trivial. To see this, we may directly
work with smooth transfer on G1pFvq and GW pFvq. We may identify GLnpEbFvq “ GLnpFvqˆ
GLnpFvq and write the function f 1n “ f 1n,1 b f 1n,2 P C8c pGLnpE b Fvqq. There is only one
isometric class of Hermitian space W for Ev{Fv. We identify the unitary group UpW qpFvq »
GLnpFvq and let fn P C8c pUpW qpFvqq “ C8c pGLnpFvqq. Similarly we have f 1n`1 for GLn`1pFvq
etc..

Proposition 2.5. If v is split in E{F , then the smooth transfer exists. In fact we may take

the convolution fi “ f 1i,1 ‹ f
1,_
i,2 where i “ n, n` 1 and f

1,_
i,2 pgq “ f

1

i,2pg
´1q

Proof. In this case the quadratic character ηv is trivial. For f 1 “ f 1n`1 b f 1n, the orbital
integral Opγ, f 1q can be computed in two steps: first we integrate over H2pFvq then over the
rest. Define

f̄ 1ipxq “

ż

GLipFvq
f 1i,1pxyqf

1
i,2pyqdy “ f 1i,1 ‹ f

1,_
i,2 pxq, i “ n, n` 1.

Then obviously we have the orbital integral for γ “ pγn`1, γnq P G
1pFvq and γi “ pγi,1, γi,2q P

GLipFvq ˆGLipFvq, i “ n, n` 1:

Opγ, f 1q “

ż

GLnpFvq

ż

GLnpFvq
f̄ 1n`1pxγn`1,1γ

´1
n`1,2yqf̄

1
npxγn,1γ

´1
n,2yqdxdy.

Now the lemma follows easily.

Now use E{F to denote a local (genuine) quadratic field extension. We write Ω for the
local transfer factor defined by (2.22) and (2.22). The main local result of this paper is the
following:

Theorem 2.6. If E{F is non-archimedean, then the smooth transfer exists.

The proof will occupy section 3 and 4.
Let χ be a character of ZGpF q and define the character χ1 of ZG1pF q to be the base change

of χ.

Corollary 2.7. If f 1 and fW match, then the χ-orbital integrals also match, i.e.:

Oχpδ, fW q “ ΩpγqOχ1pγ, f
1q

whenever γ and δ match.

Proof. It suffices to verify that the orbital integrals are compatible with multiplication by
central elements in the following sense: consider z P Eˆ ˆ Eˆ identified with the center
of G1pF q in the obvious way. We denote by z̄ the Galois conjugate coordinate-wise. Then
z{z̄ P E1 ˆ E1 which can be identified with the center of GpF q in the obvious way. Assume
that δ and γ match. Then so do zγ and z{z̄δ. We have by assumption that f 1 and fW match:

ΩpzγqOpzγ, f 1q “ Opz{z̄δ, fW q

for all z. It is an easy computation to show that our definition of transfer factors satisfy

Ωpzγq “ Ωpγq.
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Fundamental lemma. We will need the fundamental lemma for units in the spherical
Hecke algebras. Let E{F be an unramifeid quadratic extension (non-archimedean). There are
precisely two isometric classes of Hermitian space W : one with a self-dual lattice is denoted
by W0 and the other W1. For W0, the Hermitian space V “W ‘Eu with pu, uq “ 1 also has a
self-dual lattice. We denote by K the subgroup of GW0 which is the stubblier of the self-dual
lattice. Denote by K 1 the maximal subgroup G1pOF q of G1pF q. Denote by 1K and 1K1 the
corresponding characteristic function. Choose measures on GW0pF q, G1pF q so that the volume
of K,K 1 are all equal to one.

Theorem 2.8. There is a constant cpnq depending only on n such that the fundamental lemma
of Jacquet–Rallis holds for all quadratic extension E{F with residue character larger than cpnq;
namely, the function 1K P C8c pG

1pF qq and the pair fW0 “ 1K1, fW1 “ 0 are transfer of each
other.

Proof. This is proved in [61] by Z. Yun in the positive characteristic case, extended to char-
acteristic zero by J. Gordon in the appendix to [61].

An automorphic-Cebotarev-density theorem. We will need a theorem of automorphic-
Cebotarev-density type proved by Ramakrishnan. It will allow us to separate (cuspidal) spec-
trums without using the fundamental lemma for the full spherical Hecke algebras at non-split
places. It is stronger than the strong multiplicity one theorem for GLn.

Theorem 2.9. Let E{F be a quadratic extension. Two cuspidal automorphic representations
Π1,Π2 of ResE{FGLnpAq are isomorphic if and only if Π1,v » Π2,v for almost all places v of
F that are split in E{F .

The proof can be found in [52].

The trace formula identity. We first have the following coarse form of a trace formula
identity.

Proposition 2.10. Fix a character χ of ZGpF qzZGpAq and let χ1 be its base change. Fix
a split place v0 and a supercuspidal representation πv0 of GpFv0q with central character χv0.
Suppose that

• f 1 and pfW qW are nice test functions and are smooth transfer of each other.

• Let Πv0 be the local base change of πv0. Then f 1v0 is essentially a matrix coefficient of Πv0

and is related to fW,v0 as prescribed by Proposition 2.5 (in particular, fW,v0 is essentially
a matrix coefficient of πv0).

Fix a representation bvπ
0
v where the product is over almost all split places v and each π0

v is
irreducible unramified. Then we have

ÿ

Π

IΠpf
1q “

ÿ

W

ÿ

πW

JπW pfW q,

where the sums run over all automorphic representations Π of G1pAq and πW of GW pAq with
central characters χ1, χ respectively such that
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• πW,v » π0
v for almost all split v.

• πW,v0 is the fixed supercuspidal representation πv0.

• Π “ BCpπW q is a weak base change of πW , and Πv0 is the local base change of πv0. In
particular Π is cuspidal and the left hand side contains at most one term.

Proof. We may assume that all test functions are decomposable. Let S be a finite set of places
such that

• all Hermitian spaces W with fW ‰ 0 are unramified outside S.

• for any v outside S, f 1v and fW,v are units of the spherical Hecke algebras (in particular,
v is non-archimedean and unramified in E{F )

So we may identify GW pASq (and write it as GpASq) for all such W appeared in the sum.
Now we enlarge S so that for all non-split v outside S, the fundamental lemma for units holds
(Theorem 2.8). The fundamental lemma for the entire spherical Hecke algebra holds at all
non-archimedean split places. Consider the spherical Hecke algebra HpG1pASq{{K 1Sq where
K
1S “

ś

vRSK
1
v is the usual maximal compact subgroup of G1pASq, and the counterpart

HpGpASq{{KSq for unitary groups. For any f
1,S P HpG1pASq{{K 1Sq and fS P HpGpASq{{KSq

such that at a non-split v R S, f 1v, fv are the units, we have a trace formula identity:

Ipf 1S b f
1,Sq “

ÿ

W

JpfW,S b f
Sq.

Again all these test functions are nice so we may apply the simple trace formulae of Theorem
2.3 and 2.4:

ÿ

Π

IΠpf
1
S b f

1,Sq “
ÿ

W

ÿ

πW

JπW pfW,S b f
Sq.

Here all Π, πW are cuspidal automorphic representations whose component at v0 are the
given ones. Let λΠS (λπSW

, resp.) be the linear functional of the spherical Hecke algebras

HpG1pASq{{K 1Sq (HpGpASq{{KSq, resp.). Then we observe that

IΠpf
1
S b f

1,Sq “ λΠS pf
1,SqIΠpf

1
S b 1K1S q

and similarly for JπW pfW,S b fSq. Note that we are only allowed to take the unit elements
in the spherical Hecke algebras at almost all non-split spaces. Therefore we can view both
sides as linear functionals on the spherical Hecke algebraHpG1pAS,splitq{{K 1S,splitq where “split”
indicate we only consider the product over all split places outside S. These linear functionals
are linearly independent. In particular, for the fixed bvπ

0
v , we may have an equality as claimed

in the theorem. Since such Π’s are cuspidal, there exists at most one Π by Theorem 2.9 .

Now we come to the trace formula identity which will allow us to deduce the main theorems
in the introduction.

20



Proposition 2.11. Let E{F be a quadratic extension such that all archimedean places v|8 are
split. Fix a Hermitian space W0 and define V0, the group G “ GW0 by (1.3) and (1.4). Let π be
a cuspidal automorphic representation of G such that for a split place v0, πv0 is supercuspidal.
Consider decomposable nice functions f 1 and pf 1W qW satisfying the same conditions as in
Proposition 2.10. Then we have a trace formula identity:

IΠpf
1q “

ÿ

W

ÿ

πW

JπW pfW q,

where Π “ BCpπq and the sum in the right hand side runs over all W and all πW nearly
equivalent to π.

Proof. Apply Proposition 2.10 to π0
v “ πv for almost all split v. Then in the sum of the right

hand side there, all πW have the same weak base change Π. Note that the local base change
map are injective for split places and for unramified representations at non-split unramified
places. By our Hypothesis p˚q, this implies that all πW are in the same nearly equivalence
class.

A non-vanishing result. To see that the second condition in Theorem 1.1 on the niceness
of a test function does not lose generality in some sense, at least for tempered representations
at v, we will need some “regularity” result for the distribution Jπ defined by (2.20). By
the multiplicity one result of [3] and [55], we have dim HomHvpπv,Cq ď 1. We may fix
an appropriate choice of generator `Hv P HomHvpπv,Cq (`Hv “ 0 if the space is zero) and
decompose

`H “ cπ
ź

v

`Hv ,(2.24)

where cπ is a constant depending on the cuspidal automorphic representation π (and its
realization in A0pGq). This gives a decomposition of the spherical character as a product of
local spherical characters

Jπpfq “ |cπ|
2
ź

v

Jπvpfvq,(2.25)

where the spherical character is defined as

Jπvpfvq “
ÿ

φvPBpπvq
`Hvpπvpfvqφvq`Hvpφvq.

Note that Jπv is a distribution of positive type, namely, for all fv P C8c pGpFvqq,

Jπvpfv ˚ f
˚
v q ě 0, f˚v pgq :“ fpg´1q.

To see the positivity, we notice that

Jπvpfv ˚ f
˚
v q “

ÿ

φvPBpπvq
`Hvpπvpfvqφvq`Hvpπvpfvqφvq ě 0.

We will also say that a function of the form fv ˚ f
˚
v is of positive type.
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Proposition 2.12. Let πv be a tempered representation of GpFvq. Then there exists function
fv P C8c pGpFvqq supported in the Z-regular semisimple locus such that

Jπvpfvq ‰ 0.

The proof is given in the appendix A to this paper (Theorem A.2). Equivalently, the
result can be stated as follows: the support of the spherical character Jπv (as a distribution
on GpFvq) is not contained in the complement of Z-regular semisimple locus.

2.5 Proof of Theorem 1.1: piiq ùñ piq

Proposition 2.13. Let E{F be a quadratic extension of number fields such that all archimedean
places v|8 are split. Let W Ă V and H Ă G be defined by (1.3) and (1.4). Let π be a cuspidal
automorphic representation of G such that for a split place v1, πv1 is supercuspidal and for a
split place v2 ‰ v1, πv2 is tempered. Denote by Π “ BCpπq its weak base change.

If π is distinguished by H, then Lp1{2,Π, Rq ‰ 0 and Π is η-distinguished by H 12 “
GLn`1,F ˆGLn,F . In particular, in Theorem 1.1, piiq implies piq.

Proof. We apply Proposition 2.11. It suffices to show that there exist f 1 as in Proposition
2.11 such that

IΠpf
1q ‰ 0.

We will first choose an appropriate f :“ fW and then choose f 1 to be a transfer of the tuple
pfW , 0..., 0q where for all hermitan space other than W we choose the zero functions. We
choose f 1 satisfying the conditions of Proposition 2.11 . Then the trace formula identity from
Proposition 2.11 is reduced to

IΠpf
1q “

ÿ

πW

JπW pfW q.

Note that for all πW , they have the same local component at v1, v2 by our Hypothesis p˚q on
the local–global compatibility for weak base change at split places.

We choose f “ fW “ bvfv as follows. By the assumption on the distinction of π, we have
cπ ‰ 0 in (2.24) and we may choose a function g “ bvgv of positive type on GW pAq such that
Jπvpgvq ą 0 for all v. We may assume that at v1, gv1 is essentially a matrix coefficient of πv1 .
This is clearly possible. Then we have

Jπpgq “ |cπ|
2
ź

v

Jπvpgvq ą 0

and for all πW nearly equivalent to π:

JπW pgq ě 0.

Now we choose fv “ gv for every place v other than v2. We choose fv2 to be supported in
the Z-regular semisimple locus. By Proposition 2.12, we may choose an fv2 such that

Jπv2 pfv2q ‰ 0.
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For this choice of f , the trace identity is reduced to

IΠpf
1q “ Jπv2 pfv2q

˜

ÿ

πW

|cπW |
2J
π
pv2q
W

pf pv2qq

¸

where the superscript indicates the away from v2-part: J
π
pv2q
W

“
ś

v‰v2
JπW,v . In the sum,

every term is non-negative as we choose f pv2q “ gpv2q of positive type. And at least one of
these terms (the one from π) is non-zero. Therefore we conclude that for this choice the right
hand side above is non-zero. This shows that IΠpf

1q ‰ 0 and completes the proof. Note that
the proof should be much easier if we assume the multiplicity one for πW in the cuspidal
spectrum of the unitary group.

2.6 Proof of Theorem 1.4

A key ingredient is the following Burger–Sarnark type principle à la Prasad [47].

Proposition 2.14. Let V be a Hermitian space of dimension n` 1 and W a nondegenerate
subspace of codimension one. Let π be a cuspidal automorphic representation of UpV qpAq.
Fix a finite (non-empty) set S of places and an irreducible representation σv of UpW qpFvq for
each v P S such that

• If v P S is archemedean, both W and V are positive definite at v.

• If v P S is non-archimedean and split, σ0
v is induced from a representation of ZvKv where

Kv is a compact open subgroup and Zv is the center of UpW qpFvq.

• If v P S is either archimedean or non-split, the contragredient of σ0
v appears as a quotient

of πv restricted to UpW qpFvq.

Then there exists a cuspidal automorphic representation σ of UpW qpAq such that

• σv “ σ0
v for all v P S.

• the linear form `W on π b σ is non-zero.

Heuristically, this allows to pair π with a σ with prescribed local components at S such
that π b σ is distinguished.

We first show the following variant of [47, Lemma 1]. Note that the only difference lies in
the assumption on the center. The assumption on the center seems to be indispensable. For
example, it seems to be difficult to prove the same result if G “ GLn`1 and H “ GLn.

Lemma 2.15. Suppose that we are in the following situation:

• F is a number field.

• G is a reductive algebraic group defined over F , and H is a reductive subgroup of G.

• S is a finite set of places of F such that: if v P S is archimedean, then GpFvq is compact.
Denote GS “

ś

vPS GpFvq and HS “
ś

vPS HpFvq.
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• The center Z of H is anisotropic over F .

Let π be a cuspidal automorphic representation of GpAq. Let bvPSµv be an irreducible repre-
sentation of HS such that

(1) For each v P S, µv appears as a quotient of πv restricted to HpFvq.

(2) for each non-archimedean v P S, µv is supercuspidal representations of HpFvq, and it is
an induced representation µv “ IndHvZvKvνv from a representation νv of a subgroup ZvKv,
where Kv is an open compact subgroup of Hv.

Then there is an automorphic representation µ1 “
ś

v µ
1
v of HpAq and functions f1 P π, f2 P µ

1

such that

(i)
ż

HpF qzHpAq
f1phqf̄2phqdh ‰ 0,

and

(ii) If v P S is archimedean µ1v “ µv; if v P S is non-archimedean, µ1v “ IndHvZvKvν
1
v is induced

from ν 1v where ν 1v|Kv “ νv|Kv .

Proof. The proof is a variant of [47, Lemma 1]. If v P S is archimedean, let Kv “ HpFvq
and νv “ µv. It is compact by assumption. We consider the restriction of πv to Kv for each
v P S. By the assumption and Frobenius reciprocity, νv|Kv is a quotient representation of
πv|Kv . Since Kv is compact, νv|Kv is also a sub-representation for v P S. This means that
we may find a function f on GpAq whose KS “

ś

vPSKv translates span a space which is
isomorphic to bvPSνv|Kv as KS-modules. By the same argument as in [47, Lemma 1] (using
weak approximation), we may assume that such f has non-zero restriction (denoted by f̃) to
HpF qzHpAq. Now note that ZpF qzZpAq is compact. For a character χ of ZpF qzZpAq we may
define

f̃χphq :“

ż

ZpF qzZpAq
fpzhqχ´1pzqdz, h P HpF qzHpAq.

As ZS and KS commute, each of f̃ and f̃χ generates a space of functions on HpF qzHpAq
which is isomorphic to bvPSνv|Kv as KS-modules. There must exist some χ such that it is
non-zero. For such a χ, it is necessarily true that χv|ZvXKv “ ωνv |ZvXKv where ωνv is the
central character of νv. In particular, we may replace µv “ IndHvZvKvνv by µ1v :“ IndHvZvKvν

1
v

where νv is an irreducible representation of ZvKv with central character χv and ν 1v|Kv “ νv|Kv .
Certainly such µ1v is still supercuspidal if v P S is non-archimedean. If v P S is archimedean,
we have µ1v “ µv. Now we consider the space generated by f̃χ under ZSKS translations. This
space is certainly isomorphic to

ś

vPS ν
1
v as ZSKS-modules. The rest of the proof is the same

as in [47, Lemma 1], namely applying [47, Lemma 2] to the space of HS-translations of f̃χ
which is isomorphic to bvPSIndHvZvKvν

1
v as HS-modules.

We now return to prove Proposition 2.14 .
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Proof. We apply Lemma 2.15 above to H “ UpW q, G “ UpV q. Then the center of H is
anisotropic. If v P S is split non-archimedean, it is always true that µv appears as a quotient
of πv (the local conjecture in [14] for the general linear group is known to hold for generic
representations). The proposition then follows immediately.

Remark 9. Noting that any supercuspidal representation of GLnpFvq for a non-archimedean
local field Fv is induced from an irreducible representation of an open subgroup that is compact
modulo center. But an open subgroup of GLnpF q compact modulo center is not necessarily
of the form KvZv. As pointed out by Prasad to the author, it may be possible to choose an
arbitrary supercuspidal µv if one suitably extends the result in Lemma 2.15.

Now we come to the proof of Theorem 1.4.

Proof. We show this by induction on the dimension n “ dimW of W . If n is equal to one, then
the theorem is obvious. Now assume that for all dimension at most n Hermitian spaces, the
statement holds. Let V be a n` 1-dimensional Hermitian space and W is a codimension one
subspace. And let π be a cuspidal automorphic representation such that πv1 is supercuspidal
for a split place v1. By [5], there exists a supercuspidal representation σ0

v1 that verifies the
assumptions of Proposition 2.14. Then we apply Proposition 2.14 to S “ tv1u to choose a
cuspidal automorphic representation σ of UpW q such that πbσ is distinguished by H. Then by
Proposition 2.13, the weak base change of πbσ is η´distinguished by H 12 “ GLn`1,F ˆGLn,F .
By induction hypothesis, the weak base change of σ is (η-, resp.) distinguished by GLn,F if
n is odd (even, resp.). Together we conclude that the weak base change of π is (η-, resp.)
distinguished by GLn`1,F if n` 1 is odd (even, resp.). This completes the proof.

Remark 10. If we have the trace formula identity for all test functions f (say, after one
proves the fine spectral decomposition), then we may use the proof of Proposition 2.13 to
show first the existence of weak base change, then use the proof of Theorem 1.4 to show the
distinction of the weak base change as predicted by the conjecture of Flicker–Rallis. But it
seems impossible to characterize the image of the weak base change using the Jacquet–Rallis
trace formulae alone.

2.7 Proof of Theorem 1.1: piq ùñ piiq

Now we finish the proof of the other direction of Theorem 1.1: piq ùñ piiq. We may prove a
slightly stronger result, replacing the condition p2q by the following: “πv1 is supercuspidal at
a split place v1, and πv2 is tempered at a split place v2 ‰ v1.”

By Theorem 1.4 (whose proof also works if we only assume the temperedness of πv2), the
weak base change Π “ BCpπq is η-distinguished by H 12. By the assumption on nonvanishing of
Lp1{2,Π, Rq, we know that Π is also distinguished by ResE{FGLn. Therefore, IΠ is a non-zero
distribution on G1pAq and we have IΠpf

1q ‰ 0 for some decomposable f 1 “ bvf
1
v. Note that

the multiplicity one also holds in this case:

dim HomH 1ipFvq
pΠv,Cq ď 1.
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Similar to the decomposition of the distribution Jπ (2.25), we may fix a decomposition

IΠ “ cΠ

ź

v

IΠv .

In particular, cΠ ‰ 0 and for the f 1 above, IΠvpf
1
vq ‰ 0 for all v. We want to modify f 1 at the

two places v1, v2 to apply Proposition 2.11.
It is easy to see that we may replace f 1v1 by essentially a matrix coefficient of πv1 such that

the non-vanishing IΠ ‰ 0 remains. Now note that, at the split place v2, there is a nonzero
constant cv:

IΠv2
pf 1v2q “ cvJπv2 pfv2q

if Πv2 is the local base change of πv2 and fv2 is the transfer of f 1v2 as prescribed by Proposition
2.5. By Proposition 2.12, Jπv2 pfv2q ‰ 0 for some fv2 supported in Z-regular semisimple locus.
Therefore, we may choose f 1v2 supported in Z-regular semisimple locus such that IΠv2

pf 1v2q ‰ 0.
Now we replace f 1vi , i “ 1, 2 by the new choices. Then we let the tuple pfW q be a transfer of

f 1 satisfying the conditions in Proposition 2.11. By the trace formula identity of Proposition
2.11, we have

IΠpf
1q “

ÿ

πW 1

JπW 1 pfW 1q

where the sum in right hand side runs over all W 1, and all πW 1 nearly equivalent to π. There
must be at least one term Jπ1pfW 1q ‰ 0 for some W 1. This completes the proof of Theorem
1.1.

2.8 Proof of Theorem 1.2.

Now we may prove Theorem 1.2. Assume that σ “ BCpπ1q for a cuspidal automorphic
representation π1 of some unitary group UpV q where dimV “ n`1. Then by Proposition 2.14,
we may find a cuspidal automorphic π2 of UpW q for a Hermitian subspace W of codimension
one such that π “ π1 b π2 is distinguished by H. Let τ be the weak base change of π2. Then
by Theorem 1.1, the Rankin–Selberg L-function Lpσ ˆ τ, 1

2q ‰ 0. This completes the proof.

3 Reduction steps

In this and the next section, we will prove the existence of smooth transfer at a non-archimedean
non-split place (Theorem 2.6) as well as a partial result at an archimedean non-split place
(Theorem 3.14).

In this section, we reduce the question to an analogue on “Lie algebras” (an infinitesimal
version) and then to a local question around zero. Let F be a local field of characteristic
zero. In this section, both archimedean and non-archimedean local fields are allowed. Let
E “ F r

?
τ s be a quadratic extension where τ P Fˆ. We remind the reader that, even though

our interest is in the genuine quadratic extension E{F , we may actually allow E to be split,
namely, τ P pFˆq2.

26



3.1 Reduction to Lie algebras

Categorical quotients. We consider the action of H 1 :“ GLn,F on the tangent space of
the symmetric space Sn`1 (cf. §2.1) at the identity matrix 1n`1:

Sn`1 :“ tx PMn`1pEq|x` x̄ “ 0u,(3.1)

which will be called the “Lie algebra” of Sn`1. When no confusion arises, we will write it as
S for simplicity. It will be more convenient to consider the action of H 1 on the Lie algebra of
GLn`1,F :

gln`1 » tx PMnpEq|x “ x̄u.

The right hand side is isomorphic to Sn`1 non-canonically.
Let W be a Hermitian space of dimension n and let V “ W ‘ Eu with pu, uq “ 1. We

identify the Lie algebra (as an F -vector space) of UpV q with:

UpV q “ tx P EndEpV q|x` x
˚ “ 0u,(3.2)

where x˚ is the adjoint of x with respect to the Hermitian form on V :

pxa, bq “ pa, x˚bq, a, b P V.

We consider the restriction to H “ HW “ UpW q of the adjoint action of UpV q on UpV q and
UpV q.

Relative to the H-action or H 1-action, we have notions of regular semisimple elements.
Analogous to the group case, regular semisimple elements have trivial stabilizers. We also
define an analogous matching of orbits as follows. We may identify EndEpV q with Mn`1pEq
by choosing a basis of V . Then for regular semisimple x P SpF q and y P UpV qpF q, we say
that they (and their orbits) match each other if x and y, considered as elements in Mn`1pEq,
are conjugate by an element in GLnpEq. We will also say that x and y are transfer of each
other and denote the relation by xØ y.

Then, analogous to the case for groups, the notion of transfer defines a bijection between
regular semisimple orbits

SpF qrs{H
1pF q »

ž

W

UpV qpF qrs{HpF q,(3.3)

where the disjoint union runs over all isomorphism classes of n-dimensional Hermitian space
W . We recall some results from [51], [62, §2]. For the natural map π1F : SpF q Ñ pS{{H 1qpF q
(πW,F : UpV qpF q Ñ pUpV q{{HqpF q, resp.), the fiber of a regular semisimple element consists
of precisely one orbit (at most one, resp.) with trivial stabilizer. Moreover, π1F is surjective.
In particular, π1F induces a bijection:

SpF qrs{{H
1pF q » pS{{H 1qpF qrs.

And πW,F induces a bijection between UpV qpF qrs{HpF q and its image in pUpV q{{HqpF q.
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A more intrinsic way is to establish an isomorphism between the categorical quotients
between S{{H 1 and UpV q{{H. To state this more precisely, let us consider the invariants on
them. We may choose a set of invariants on Sn`1

tr^i x, e ¨ xj ¨ e˚, 1 ď i ď n` 1, 1 ď j ď n;(3.4)

and on UpV q for V “W ‘ Eu:

tr^i y, pyju, uq, 1 ď i ď n` 1, 1 ď j ď n,(3.5)

where x P Sn`1 and y P UpV q. If we write Sn`1 Q x “

ˆ

A b
c d

˙

, A P Sn, an equivalent set of

invariants on Sn`1 are

tr^i A, c ¨Aj ¨ b, d, 1 ď i ď n, 0 ď j ď n´ 1.(3.6)

Similarly for the unitary case.
Denote by Q “ A2n`1 the 2n` 1-dimensional affine space (in this and the next section we

are always in the local situation and A will denote the affine line instead of the ring of adeles).
Then the invariants above define a morphism

πS : Sn`1 Ñ Q

x ÞÑ ptr^i x, e ¨ xj ¨ e˚q, i “ 1, 2, ..., n` 1, j “ 1, 2, ..., n.

To abuse notation, we will also denote by πS the morphism defined by the second set of
invariants above. Similarly we have morphism denoted by πU for the unitary case. We will
simply write π if no confusion arises.

Lemma 3.1. For each case V “ S or UpV q, the pair pQ, πVq defines a categorical quotient of
V.

Equivalently, the set of invariants defined by (3.4) ((3.5), resp.) is a set of generators of the
ring of invariant polynomials on Sn`1 (UpV q, resp.). Moreover, we have an obvious analogue
if we replace Sn`1 by gln`1.

Proof. As this is a geometric statement, we may extend the base field to the algebraic closure
where two cases coincide. Hence it suffices to treat the case V “ S or the equivalent case
V “ gln`1. We will use the set of invariants (3.6) for gln`1. We will use Igusa’s criterion
([33, Lemma 4], or [48, Theorem 4.13]): Let a reductive group H act on an irreducible affine
variety V. Let Q be a normal irreducible affine variety, and π : V Ñ Q be a morphism which
is constant on the orbits of H such that

p1q Q´ πpVq has codimension at least two;

p2q There exists a non-empty open subset Q0 of Q such that the fiber π´1pqq of q P Q0

contains exactly one closed orbit.
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Then pQ, πq is a categorical quotient for the H-action on V .
For gln`1, the morphism π is clearly constant on the orbits of H. Now we define a section

of π close to the classical companion matrices. Consider

¨

˚

˚

˚

˚

˝

0 1 0 ... 0
0 0 1 ... 0
... ... 0 1 0
bn bn´1 ... b1 1
an an´1 ... a1 d

˛

‹

‹

‹

‹

‚

.

Then its invariants are

tr^i A “ p´1qi´1bi, c ¨A
j ¨ b “ aj`1, d i “ 1, 2, ..., n, j “ 0, 1, 2, ..., n´ 1.

This gives us an explicit choice of section of π and it shows that π is surjective. This verifies
p1q. By [51], for all regular semisimple q P Q, the fiber of q consists of at most one closed
orbit. It follows by the explicit construction above that the fiber contains precisely one closed
orbit. The regular semisimple elements form the complement of a principle divisor and hence
we have verified condition p2q. This completes the proof.

By this result, we have a natural isomorphism between the categorical quotients S{{H 1

and UpV q{{H. In the bijection (3.3) the appearance of disjoint union is due to the fact that
the map between F -points induced by πS is surjective but the one induced by πUpV q is not.

Lemma 3.1 also allows us to transfer semisimple elements (not necessarily regular): we
say that two semisimple elements x P SpF q and y P UpV qpF q match each other if they
have the same invariants, or equivalently, their images in the quotients correspond to each
other under the isomorphism between the categorical quotients. A warning is that, given a
semisimple x P SpF q (not necessary regular), in general there may be more than one matching
semisimple orbits in UpV qpF q.

Smooth transfer conjecture of Jacquet–Rallis. Before we state the infinitesimal version
of smooth transfer, we need to define a transfer factor on the level of Lie algebras.

Definition 3.2. Consider the action of H 1 on X “ gln`1 or S. A transfer factor is a smooth
function ω : XpF qrs Ñ Cˆ such that ωpxhq “ ηphqωpxq.

Obviously, two transfer factors ω, ω1 differer by a H 1pF q-invariant smooth function ξ :
XpF qrs Ñ Cˆ. If ξ extends to a smooth function on XpF q (with moderate growth towards
infinity for a norm on XpF q if F is archimedean), we say that ω, ω1 are equivalent and denote
by ω „ ω1.

We have fixed a transfer factor Ω earlier on the relevant groups by (2.21), (2.22) and (2.23).
We now define a transfer factor on the Lie algebras. If

?
τx P SpF q is regular semisimple, we

define

ωp
?
τxq :“ ηpdetpe, ex, ex2, ..., exnqq.(3.7)
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Now we may similarly define the notion of transfer of test functions on SpF q and UpV qpF q.
For an f 1 P C8c pSpF qq, and a tuple pfW qW where fW P C8c pUpV qpF qq, they are called a
(smooth) transfer of each other if for all matching regular semisimple SpF q Q x Ø y P
UpV qpF q, V “W ‘ Eu, we have

ωpxqOpx, f 1q “ Opy, fW q.

For n P Zě1, we rewrite the “smooth transfer conjecture” of Jacquet-Rallis ([39]) for the
symmetric space Sn`1 and the unitary group UpV q as follows:

Conjecture Sn`1: For any f 1 P C8c pSn`1pF qq, its transfer pfW qW exists, where fW P

C8c pUpV qpF qq. And the other direction also holds, namely, given any a tuple pfW qW , there
exists its transfer f 1.

The corresponding statement for Lie algebras can be stated as
Conjecture Sn`1: For any f 1 P C8c pSn`1pF qq, its transfer pfW qW exists, where fW P

C8c pUpV qpF qq. And the other direction also holds, namely, given any a tuple pfW qW , there
exists its transfer f 1.

Note that the statement depends on the choice of a transfer factor. But it is obvious that
the truth of the conjecture does not depend on the choice of the transfer factor within an
equivalence class.

Reduction to Lie algebras. We now reduce the group version of smooth transfer conjec-
ture to the Lie algebra one.

Theorem 3.3. Conjecture Sn`1 implies Conjecture Sn`1.

To prove this theorem, we need some preparation. For ν P E we define a set

Dν “ tx PMn`1pEq|detpν ´ xq “ 0u.

We will choose a basis of V to realize the unitary group UpV q (UpV q, resp.) as a subgroup (a
F -sub-vector-space, resp.) of GLn`1,E (Mn`1pEq, resp.).

Lemma 3.4. Let ξ P E1. The Cayley map

αξ : Mn`1pEq ´D1 Ñ GLn`1pEq

x ÞÑ ´ξp1` xqp1´ xq´1.

induces an H-equivariant isomorphism between Sn`1pF q´D1 and Sn`1pF q´Dξ. In particular,
if we choose a sequence of distinct ξ1, ξ2, ..., ξn`2 P E

1, the images of Sn`1pF q´D1 under αξi
form a finite cover by open subset of Sn`1pF q.

Similarly, αξ induces an UpW q-equivariant isomorphism between UpV qpF q´D1 and UpV qpF q´
Dξ.

Proof. First it is easy to verify that the image of αξ lies in S “ Sn`1, i.e.,:

αpxqᾱpxq “ p1` xqp1´ xq´1p1` x̄qp1´ x̄q´1 “ 1,
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which holds as long as char F ‰ 2. Now we note that if detpξ ´ sq ‰ 0, αξ has an inverse
defined by

s ÞÑ ´pξ ` sqpξ ´ sq´1.

This shows that the image of αξ is S ´Dξ and αξ defines an isomorphism between two affine
varieties.

The same argument proves the desired assertion in the unitary case.

Lemma 3.5. The transfer factors are compatible under the Cayley map αµ.

Proof. It suffices to consider the case µ “ 1 as the argument is the same for a general µ. Note
that p1` xq and p1´ xq˘1 commute. We have

Ωpp1` xqp1´ xq´1q “ η1pdetpp1` 2p1´ xq´1qie˚qn´1
i“0 q.

Set T “ 2p1´ xq´1. Then it is easy to see that the determinant is equal to

detpp1` T qie˚qn´1
i“0 “ detpT ie˚qn´1

i“0

by elementary operations on a matrix. This is equal to

2np´1qnpn´1q{2 detpp1´ xqie˚qn´1
i“0 “ 2n detpxie˚qn´1

i“0 .

Therefore we have proved that

Ωpp1` xqp1´ xq´1q “ η1p2n detpxie˚qn´1
i“0 q “ c ¨ ωpx{

?
τq.

for a non-zero constant c.

For more flexibility, we will consider the following statement Pµ indexed by µ P Fˆ:
Pµ: For f P C8c pSn`1 ´Dµq, its transfer pfW q exists and can be chosen such that fW P

C8c pUpV q ´Dµq. And the other direction also holds.
Then it is clear that if Pν holds for all µ P Fˆ, then Conjecture Sn`1 follows by applying

a partition of unity argument to the open cover of Sn`1 and UpV q for distinct µ0, ..., µn`1.
To prove Theorem 3.3, it remains to show the following:

Lemma 3.6. Conjecture Sn`1 implies Pµ for all µ P Fˆ.

Proof. Fix a µ. Assume that pfW q is a transfer of f P C8c pS´Dµq. Let Y “ supppfq Ď SpF q
and Z “ π1pY q. It suffices to show that for each W there exists a function αW P C8pUpV qpF qq
(smooth when F is archimedean, locally constant when F is non-archimedean) satisfying

1. αW is HpF q-invariant,

2. αW |π´1
W pZq ” 1,

3. αW |Dµ ” 0.
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Then we may replace fW by fWαW , which will still be in C8c pUpV qpF qq and has the same
orbital integral as fW .

Now note that Z “ π1pY q Ď pS{{H 1qpF q is compact. And Dµ is the preimage under rπ of
a hypersurface denoted by C in pS{{H 1qpF q such that Z X C “ H. Then we may find a C8

function β on pS{{H 1qpF q satisfying

1. β|Z ” 1.

2. β|C ” 0.

When F is archimedean, one may construct β using a bump function. When F is non-
archimedean function, we may cover Z by open compact subsets pZ which is disjoint from C.
Then we take β to be the characteristic function of pZ.

Then we may take αW to be the pull-back of β under πW,F .
The other direction can be proved similarly.

We have completed the proof of Theorem 3.3.

3.2 Reduction to local transfer around zero

The aim of this section is to reduce the existence of transfer to the existence of a local transfer
near zero (Proposition 3.16). From now on we will denote by Qn “ A2n`1 or simply Q the
common base Sn`1{{H

1 » UpV q{{H as an affine variety.

Localization. We fix a transfer factor ω and let π1 : SpF q Ñ QpF q and π : UpV qpF q Ñ QpF q
be the induced maps on the rational points.

Definition 3.7. Let Φ be a function on QpF qrs which vanishes outside a compact set of QpF q.

p1q For x P QpF q (not necessarily regular-semisimple), we say that Φ is a local orbital
integral for S around x P QpF q if there exists a neighborhood U of x in QpF q and a
function f P C8c pSpF qq such that for all y P Urs, and z with π1pzq “ y we have

Φpyq “ ωpzqOpz, fq.

p2q Similarly we can define a local orbital integral for UpV q around a point x P QpF q.

Note that if Φ is a local orbital integral for a transfer factor ω, it is also a local orbital
integral for any other equivalent transfer factor ω1 „ ω.

We have the following localization principle for orbital integrals.

Proposition 3.8. Let Φ be a function on QpF qrs which vanishes outside a compact set U of
QpF q. If Φ is a local orbital integral for S at x for all x P QpF q, then it is an orbital integral,
namely there exists f P C8c pSpF qq such that for all y P QpF qrs, and z with π1pzq “ y we have

Φpyq “ ωpzqOpz, fq.

Similar result holds for UpV q.
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Proof. By assumption, for each x P U we have an open neighborhood Ux and fx P C8c pSpF qq.
By the compactness of U , we may find finitely many of them, say x1, ..., xm, such that Uxi
cover U . Then we apply “partition of unity” to the cover of QpF q by Uxi (i “ 1, 2, ...,m)
and QpF q ´ U to obtain smooth functions βi, β on QpF q such that supppβiq Ď UXi and
supppβq Ď QpF q ´ U and β `

ř

i βi is the identify function on QpF q. Since Φβ ” 0, we may
write Φ “

řm
i“1 Φi where Φi “ Φβi is a function on QpF qrs which vanishes outside Uxi . Then

αi “ βi ˝ π
1 is a smooth H 1pF q-invariant function on SpF q and fxiαi P C8c pSpF qq. We claim

that for every y P QpF qrs and z P π1´1pyq, we have ωpzqOpz, fxiαiq “ Φipyq. Indeed, the
left hand side is equal to ωpzqOpz, fxiqβpyq. If y is outside Uxi , then both sides vanish. If
y P Uxi , then by the choice of fxi , we have ωpzqOpz, fxiq “ Φpyq. By the claim, we may take
f “

ř

i fxiαi to complete the proof.

For f P C8c pSpF qq, we define a “direct image” π1˚,ωpfq as the function on QpF qrs:

π1˚,ωpfqpxq :“ ωpyqOpy, fq,

where x P QpF qrs, y P pπ
1q´1pxq. It clearly does not depend on the choice of y. Similarly, for

fW P C8c pUpV qq, we define a function πW,˚pfW q on QpF qrs (extend by zero to those x P QpF qrs
such that π´1

W pxq is empty). If the dependence of W is clear, we will also write it as π˚,ωpfW q
with the trivial transfer factor ω “ 1.

Definition 3.9. For x P QpF q (not necessarily regular-semisimple), we say that the local
transfer around x exists, if for all f P C8c pSpF qq, there exist pfW qW (fW P C8c pUpV qq) such
that in a neighborhood of x in QpF q, the following equality holds

π1˚,ωpfq “
ÿ

W

πW,˚pfW q,

and conversely for any tuple pfW qW , we may find f satisfying the equality.

Descent of orbital integrals We recall some results of [2]. Let V be a representation of a
reductive group H. Let π : V Ñ V{{H be the categorical quotient. An open subset U Ă VpF q
is called saturated if it is the preimage of an open subset of pV{{HqpF q.

Let x P VpF q be a semisimple element. Let NV
Hx,x be the normal space of Hx at x. Then

the stabilizer Hx acts naturally on the vector space NV
Hx,x. We call pHx, N

V
Hx,xq the sliced

representation at x.
An étale Luna slice (for short, a Luna slice) at x is by definition ([2]) a locally closed smooth

Hx-invariant subvariety Z Q x together with a strongly étale Hx-morphism ι : Z Ñ NV
Hx,x such

that the H-morphism φ : H ˆHx Z Ñ V is strongly étale. Here, H ˆHx Z is pH ˆ Zq{{Hx for
the action hxph, zq “ phh

´1
x , hxq and an H-morphism between two affine varieties φ : X Ñ Y

is called strongly étale if φ{{H : X{{H Ñ Y {{H is étale and the induced diagram is Cartesian:

X

��

φ // Y

��
X{{H

φ{{H // Y {{H.
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When there is no confusion, we will simply say that Z is an étale Luna slice.
We then have the Luna’s étale slice theorem: Let a reductive group H act on a smooth

affine variety X and let x P X be semisimple. Then there exists a Luna slice at x. We will
describe an explicit Luna slice in the appendix for our case. We may even assume that the
morphism ι is essentially an open immersion in our case.

As an application, we have an analogue of Harish-Chandra’s compactness lemma ([28,
Lemma 25]).

Lemma 3.10. Let x P VpF q be semisimple. Let Z be an étale Luna slice at x. Then for
any HxpF q-invariant neighborhood U of x in ZpF q whose image in pZ{{HxqpF q is (relatively)
compact, and any compact subset Ξ of VpF q, the set

th P HxpF qzHpF q : Uh X Ξ ‰ Hu

is relatively compact in HxpF qzHpF q. Recall that the notation Uh is given by (1.7).

Proof. We consider the étale Luna slice:

φ : H ˆHx Z Ñ V.

Consider the composition:

H ˆHx Z » V ˆV{{H Z{{Hx ãÑ V ˆ Z{{Hx.

The composition is a closed immersion. Shrinking Z if necessary, we may take the F -points
to get a closed embedding

i : pH ˆHx ZqpF q ãÑ VpF q ˆ pZ{{HxqpF q.

We also have the projection

H ˆHx Z “ pH ˆ Zq{{Hx Ñ HxzH.

We denote

j : pH ˆHx ZqpF q Ñ pHxzHqpF q.

Note that HxpF qzHpF q sits inside pHxzHqpF q as an open and closed subset. Let U 1 be
the image of U in pZ{HxqpF q. Then we see that the set

th P HxpF qzHpF q : Uh X Ξ ‰ Hu

is contained in
ji´1pΞX U 1q

which is obviously compact.

We also need the analytic Luna slice theorem ([2, Theorem 2.7]): there exists
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p1q an open HpF q-invariant neighborhood U of HpF qx in VpF q with an H-equivariant re-
tract p : U Ñ HpF qx;

p2q a Hx-equivariant embedding ψ : p´1pxq ãÑ NV
Hx,xpF q with an open saturated image such

that ψpxq “ 0.

NV
Hx,xpF q p´1pxq

ψoo

��

// U

p

��
0

OO

xoo // HpF qx

Denote S “ p´1pxq and N “ NV
Hx,xpF q. The quintuple pU, p, ψ, S,Nq is then called an analytic

Luna slice at x.
From an étale Luna slice we may construct an analytic Luna slice from (cf. the proof of

[2, Corollary A.2.4]). In our case, the existence of analytic Luna slice is self-evident once we
describe the explicit étale Luna slices in the appendix.

We recall some useful properties of analytic Luna slice ([2, Corollary 2.3.19]). Let y P
p´1pxq, and z :“ ψpyq. Then we have

p1q pHpF qxqz “ HpF qy.

p2q N
VpF q
HpF qy,y “ NN

HxpF qz,z
as HpF qy-spaces.

p3q y is H-semisimple if and only if z is Hx-semisimple.

As an application, we state the Harish-Chandra (semisimple-) descent for orbital integrals.

Proposition 3.11. Let x P VpF q be semisimple and let pU, p, ψ, S,Nq be an analytic Luna
slice at x. Then there exists a neighborhood U Ă ψpSq of 0 in NV

Hx,xpF q with the following
properties

• To every f P C8c pVpF qq, we may associate fx P C8c pN
V
Hx,xpF qq such that for all semisim-

ple z P U (with z “ ψpyq) such that η|HypF q “ 1, we have
ż

HypF qzHpF q
fpyhqηphqdh “

ż

HypF qzHxpF q
fxpz

hqηphqdh.(3.8)

• Conversely, given fx P C8c pN
V
Hx,xpF qq, we may find f P C8c pVpF qq such that (3.8) holds

for all semisimple z P U with η|HypF q “ 1.

Proof. Let U 1 be a relatively compact neighborhood of x in S and let U “ ψpU 1q. By Lemma
3.10, we may find a compact set C of HxpF qzHpF q that contains the set

th P HxpF qzHpF q : U 1h X supppfq ‰ Hu.

In the non-archimedean case, we may assume that C is compact open. Choose any function
α P C8c pHpF qq such that the function

HxpF qzHpF q Q h ÞÑ

ż

HxpF q
αpghqdg
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is the characteristic function 1C in the non-archimedean case (or, in the archimedean case,
a bump function that takes value one on C and zero outside some larger compact subset
C1 Ą C). We define a function on S by:

fxpyq :“

ż

HpF q
fpyhqαphqηphqdh.

In the non-archimedean case, we may assume that S is a closed subset of V and in the
archimedean case, we may assume that S contains a closed neighborhood of x in V whose
image in NV

Hx,xpF q is the pre-image of a closed neighborhood in the categorical quotient.
Then possibly using a bump function in the archimedean case to modify fx, we may assume
that fx P C8c pSq. The map f ÞÑ fx depends on U . We may also view fx P C8c pN

V
Hx,xpF qq via

the embedding ψ : S ãÑ NV
Hx,xpF q.

Now the right hand side of (3.8) is equal to

ż

HypF qzHxpF q

ż

HpF q
fpyhgqαpgqηpgqdg ηphqdh

“

ż

HypF qzHxpF q

ż

HpF q
fpygqαph´1gqηpgq dgdh

“

ż

HypF qzHxpF q

ż

HypF qzHpF q

ż

HypF q
fpygqαph´1pgqdp ηpgqdgdh.

Interchange the order of the first two integrals and notice that when g P C

ż

HypF qzHxpF q

ż

HypF q
αph´1pgqdpdh “

ż

HxpF q
αph´1gqdh “ 1.

By Lemma 3.10, the value of the above integral outside C does not matter when y P U 1. We
thus obtain

ż

HypF qzHpF q
fpygq1Cpgqηpgqdg.

This is equal to the left hand side when y P U 1 (or equivalently, ψpyq “ z P U).
To show the converse, we note that ψpSq is saturated in NV

Hx,xpF q. Replacing fx by fx ¨1S
in the non-archimedean case, and by fx ¨ αS for some bump function α in the archimedean
case, we may assume that supppfxq Ă ψpSq. Then we choose a function β P C8c pHpF qq such
that

ż

HpF q
βphqηphqdh “ 1.(3.9)

Consider the natural surjective map

HpF q ˆ S Ñ U
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under which HpF q ˆ S is a HxpF q-principal homogenous space over U (in the category of
F -manifolds). It is obviously a submersion. We define f P C8c pUq by integrating β b fx over
the fiber

fpyhq :“

ż

HxpF q
fxpψpy

gqqβpg´1hqdg, y P S, h P HpF q.

Then f P C8c pUq can be also viewed as an element in C8c pVpF qq. The left hand side of (3.8)
is then equal to

ż

HypF qzHpF q

ż

HxpF q
fxpψpy

gqqβpg´1hqdg ηphqdh

“

ż

HypF qzHpF q

ż

HypF qzHxpF q

ż

HypF q
fxpψpy

gqqβpg´1p´1hqdg ηphqdh

“

ż

HypF qzHxpF q

˜

ż

HpF q
βpg´1hqηphqdh

¸

fxpψpy
gqqdg.

By (3.9), this is equal to

ż

HypF qzHxpF q
fxpψpy

gqqηpgqdg.

This completes the proof.

Smooth transfer for regular supported functions.

Lemma 3.12. Let V be either S or UpV q. Let f P C8c pVpF qq. Then the function π˚,ωpfq is
smooth on pV{{HqpF qrs and (relatively) compact supported on pV{{HqpF q.

Proof. The smoothness follows from the first part of Proposition 3.11 and the fact that the
stabilizer of a regular semisimple element is trivial. The support is contained in the continuous
image of a compact set, hence (relatively) compact.

Proposition 3.13. (1) If f 1 P C8c pSrsq, then π˚,ω P C8c pQpF qrsq. Conversely, given
φ P C8c pQpF qrsq viewed as a function on QpF q, there exists f 1 P C8c pSrsq such that
π˚,ωpf

1q “ φ.

(2) If fW P C8c pUpV qrsq, then π˚pfW q P C8c pQpF qrsq. Conversely, given φ P C8c pQpF qrsq
viewed as a function on QpF q, there exists a tuple pfW P C8c pUpV qrsqqW such that
ř

W π˚pfW q “ φ.

Proof. We only prove p1q and the proof of p2q is similar. By Lemma 3.12, it suffices to show
the converse part. By the localization principle Proposition 3.8 (or rather its proof), it suffices
to show that for every regular semisimple x P QpF q, φ is locally an orbital integral at x of
a function with regular-semisimple support. We now fix a regular semisimple x. Note that
the stabilizer of x is trivial. When choosing of the analytic slice, we may require that S is
contained in the regular semisimple locus. Then the result follows from the decent of orbital
integral, i.e., the second part of Proposition 3.11.
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This immediately implies:

Theorem 3.14. Given f 1 P C8c pSrsq, there exists its smooth transfer pfW q such that fW P

C8c pUpV qrsq. Conversely, given a tuple pfW P C8c pUpV qrsqqW , there exists its smooth transfer
f 1 P C8c pSrsq.

In particular, this includes the existence of local transfer at a regular semisimple point
z P QpF q.

We also emphasize that in Theorem 3.14, the local field F is allowed to be archimedean.

Reduction to local transfer around 0 of sliced representations. The result in the
rest of this section relies on the results in the appendix B on the explicit construction of Luna
slices. The construction is very technical and we decide to write it as an appendix. We need
the explicit construction, instead of the abstract existence theorem, for at least one reason: we
need to compare the transfer factors for the original and the sliced representations (Lemma
3.15 below).

We now fix z P QpF q. Within the fiber of z, there are one semisimple H 1-orbit in Sn`1

and finitely many semisimple H-orbits in UpV q. Note that there may be infinitely many
non-semisimple orbits within the fiber. By the description of the sliced representations at
semisimple elements in the appendix B, we know that they are products of lower dimensional
vector spaces that are of the same type as S or UpV q with possibly extending the base field
F to a finite extension. So we may also speak of the local transfer around zero of those sliced
representations.

To compare the local transfer at z, and at zero of the sliced representations, we need
to compare their transfer factors. We may define an equivalent choice of transfer factors as

follows. For x “

ˆ

X u
v d

˙

P gln`1,F we define

νpxq “ detpu,Xu,X2u, ...,Xn´1uq.

Then the transfer factor can be chosen as ηpνpxqq P t˘1u.

Lemma 3.15. We may choose an Hx-invariant neighborhood of x such that for any y in this
neighborhood, ωpyq is equal to a non-zero constant times ωpψpyqq.

Proof. We only treat the two basic case: (1) r “ 0, (2) r “ n, where r is as in the appendix B.
The general case can be reduced to those two by the same strategy as in the proof of Lemma
B.4 in the appendix B. When r “ n, namely x is regular semisimple so that Hx is trivial, the
assertion follows since there is a neighborhood of x over which ω is a constant. When r “ 0,
using the notations in (B.3) we have

νpyq “ ˘νpψpyqqdetpadpY q, gln`1{gln`1,Y11q
1{2,

where detpadpY q, gln`1{gln`1,Y11q
1{2 is a square root of detpadpY q, gln`1{gln`1,Y11q (for exam-

ple it can be given by the determinant of adpY q on the upper triangular blocks). Since
detpadpXq, gln`1{gln`1,X11q ‰ 0, we may shrink the neighborhood if necessary such that
ηpνpyqq and ηpνpψpyqqq differ only by a non-zero constant.
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Proposition 3.16 (Reduction to zero). Fix z P QpF q. If the local transfer around zero exists
for the sliced representations at z, then the local transfer around z exists.

Proof. By Proposition 3.11 , the orbital integral of regular semisimple element near a semisim-
ple element can be written as an orbital integral of regular semisimple elements near zero of
the sliced representation. By our construction in the appendix B, the choice of étale and
analytic Luna slices on Sn`1 and UpV q’s can be made compatible. Moreover, the transfer
factors are compatible with respect to the choice of analytic Luna slices by Lemma 3.15. This
completes the proof.

Remark 11. We see that the reduction steps are along the same line as those in the clas-
sical endoscopic transfer by Langlands–Shelstad. The only non-trivial point is the explicit
construction of the étale Luna slices which is slightly more involved than the case of adjoint
action of a reductive group on its Lie algebra.

4 Smooth transfer for Lie algebra

In this section we prove Theorem 2.6. From now on we assume that F is a non-archimedean
local field of characteristic zero.

4.1 A relative local trace formula

To simplify notations we unify the linear side and the unitary side in this subsection. Let F
be a field and E be an étale F -algebra of rank two. Namely, E is either

• a quadratic field extension of F , or

• F ˆ F .

Let W be a free E-module of rank n and p¨, ¨q : W ˆW Ñ E a non-degenerate Hermitian
form. We denote by H “ HW the algebraic group UpW q:

H “ UpW q “ th P AutEpW q : phu, hvq “ pu, vq, u, v PW u

and UpW q its Lie algebra:

UpW q “ tX P EndEpW q : pAu, vq “ ´pu,Avqu.

Note that we allow E “ F ˆ F , in which case we have H » GLn.
We will use xÑ x̄ to denote the (unique) non-trivial F -linear automorphism of E. In the

case E “ F ˆ F , it is the permutation of the two coordinates.
We consider the representation of H “ HW on the F -vector space:

V “ UpW q ˆW.(4.1)

We usually denote by x “ pX,wq an element of V for X P UpW q, w PW . We define

∆pxq “ ∆pX,wq “ detppXiw,Xjwqqn´1
i,j“0.(4.2)
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Then x is regular semisimple if and only if ∆pxq ‰ 0. In the case E “ F ˆF , we also consider
gln ˆ Fn ˆ F

n with the natural action of H “ GLn by

h ¨ pX,u, vq “ ph´1Xh, uh´1, hvq.

Similarly we define for an element x “ pX,u, vq

∆pxq “ ∆pX,u, vq “ detpuXi`jvqn´1
i,j“0.(4.3)

Then x is regular semisimple if and only if ∆pxq ‰ 0. In either case, we denote by DpXq the
discriminant of X P UpW q or gln, namely

DpXq “
ź

i,j

pλi ´ λjq
2,(4.4)

where λ1, λ2, ..., λn are the n eigenvalues of X.

Upper bound of orbital integrals. We first estimate the orbital integral for a regular
semisimple x P V:

Oxpfq “ Opx, fq :“

ż

H
fpxhqηphqdh, f P C8c pVq,(4.5)

where η is any (unitary) character. Let h be the Lie algebra of H “ HW . Then we have
V “ hˆW .

Lemma 4.1. Let Ω Ă hpF q be a compact open set. Let T be a Cartan subgroup of HpF q
and t Ă hpF q be the corresponding Cartan subalgebra. Let ϕ P C8c pW q. Then there exists
a constant r ą 0 depending only on n and a constant C depending only on n, ϕ,Ω with the
following property: for all regular semisimple X P t, and h P GLnpF q such that Xh P Ω, we
have

ˇ

ˇ

ˇ

ˇ

ż

T
ϕpwhqdt

ˇ

ˇ

ˇ

ˇ

ď C ¨maxt1, log|∆pX,wq|ur.

Proof. We prove this in the general linear case. The unitary case is similar and easier. We
write V “ gln ˆ Fn ˆ Fn and x “ pX,u, vq. If h´1Xh P Ω, then for all i, j “ 0, ..., n ´ 1, the
following vectors are in a compact set depending only on the support of ϕ and Ω:

h´1t´1Xiv, uXjth.

Write δ1 “ pX
ivqi“0,...,n´1 P glnpF q and δ2 “ puX

jqj“0,...,n´1 P glnpF q so that ∆pX,u, vq “
detpδ1δ2q. Then the condition becomes that the elements

h´1t´1δ1, δ2th,

are in a compact set Ω1 of glnpF q depending only on the support of ϕ and Ω.
We may identify t with

śe
i“1Ei and T with

śe
i“1E

ˆ
i where Ei{F is a degree ni field

extension such that
ř

ni “ n. Let P be the parabolic of H “ GLn´1 associated to the
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partition
ř

ni “ n with Levi decomposition P “ MN and we may assume that T Ă M .
Then T is elliptic in M . By Iwasawa decomposition H “ NMK for K “ GLnpOF q, we may
write h “ nmk, δ1 “ n1m1k1, δ2 “ k2m2n2. By enlarging Ω1 if necessary,we may assume that
Ω1 “ KΩ1K (i..e, bi-K-invaraint). Since h´1tδ1 “ k´1m´1n´1tn1m1k1 P Ω1, we may see
that the Levi component m´1t´1m1 P Ω2 for a compact set Ω2 of M2pF q. Similarly we have
m2tm P Ω2. Let t “ ptpiqqei“1 P T where tpiq P Eˆi , and similarly for m,m1,m2. Then there
exist constants C1, C2 ą 0 such that for all i “ 1, 2, ..., e:

C1| detpm
piq
1 pm

piqq´1q| ď |ti| ď C2|detpm
piq
2 mpiqq|´1.

The volume of such ti is bounded above by

C3 ` log
C2| detpm

piq
2 mpiqq|´1

C1|detpm
piq
1 pm

piqq´1q|
“ C4 ´ log| detpm

piq
1 m

piq
2 q|

for constants C3, C4. In particular, the integral in the lemma is zero unless for all i “ 1, 2, ..., e
we have

C4 ´ log| detpm
piq
1 m

piq
2 q| ě 0.

Under this assumption, there is a constant C such that for all i “ 1, 2, ..., e:

C4 ´ log|detpm
piq
1 m

piq
2 q| ď C5 ´

e
ÿ

i“1

log| detpm
piq
1 m

piq
2 q|,

which is equal to
C5 ´ log|detpm1m2q| “ C5 ´ log| detp∆pX,u, vqq|.

Then it is easy to see that the integral over T is either zero or bounded above by the
L8-norm of ϕ times

pC5 ´ log| detp∆pX,u, vqq|qk.

Now the lemma follows immediately.

Before we proceed, we introduce one more definition: we say that x “ pX,wq is strongly
regular if x,X,w are all H-regular semisimple (ie., ∆pxq ‰ 0, pw,wq ‰ 0 and DpXq ‰ 0).

Proposition 4.2. Let f P C8c pVq. Then there exist a constant C depending on f , and an
integer r ą 0, such that for all x P V strongly regular:

|Opx, fq| ď C ¨maxt1, | log |∆pxq||rumaxt1, |DpXq|´1{2u.

Proof. We only give the proof in the general linear case. The unitary case is similar and easier.
We choose a (finite) complete set of representatives of Cartan subalgebras t up to H-conjugacy.
We may assume that X P t and f “ φbϕ where φ P C8c pglnpF qq and ϕ P C8c pFnˆF

nq as in
Lemma 4.1. Then we have Now we have

|Opx, fq| ď C6 ¨maxt1, | log |∆pxq||u

ż

H{T
|φ|pht0h

´1qdh.

By the bound of Harish-Chandra ([29]) on the usual orbital integral, the integral in the right
hand side is bounded by a constant times maxt1, |DpXq|´1{2u. Since there are only finitely
many t, we may choose a uniform constant C to complete the proof.
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Local integrability. We want to show the orbital integral, as a function on V, is locally
integrable. The following result is probably well-known. But we could not find a reference so
we decide to include a proof here.

Lemma 4.3 (Igusa integral). Let P pxq P F rx1, ..., xms be a polynomial. Then there exists
ε ą 0 such that

ż

OmF
|P pxq|´εdx ă 8.

If P is homogeneous, then there exists ε ą 0 such that the function |P pxq|´ε is locally integrable
everywhere on Fm.

Proof. The first assertion implies the second one. If P is homogenous of degree k ě 0, assuming
the first assertion we want to show that |P |´ε is locally integrable around any x0 P F

m. Indeed,
we may assume that x0 P $

´nOm for some n ą 0. By homogeneity, we have
ż

$´nOm
|P pxq|´εdx “ |$|´mn`εkn

ż

Om
|P pxq|´εdx ă 8.

This shows the local integrality around x0.
To show the first assertion, we may assume that P P OF rxs and F “ Qp. Now following

Igusa ([9]) we define
rNn :“ 7tx P pZp{pnqm|fpxq ” 0 mod pnu.

Let wn “ rNn{p
nm. Then wn`1 ă wn and we want to prove that there exists ε ą 0 such that

ÿ

n

pnεpwn ´ wn`1q ă 8.

We define an associated Poincare series

rP pT q “
8
ÿ

n“0

rNnT
n.

By the rationality of rP pT q (proved first by Igusa, [9]), we may write

rP pT q “ QpT q
ź

i,j

p1´ αi,jp
βiT q´ki,j ,

where βi P R, ki P Ną0, and βi are distinct, αi,j are roots of unity, QpT q is a polynomial ([9,

Remark 3.3]). We must have all βi ď m since rNn ď |pZp{pnqm| “ qnm for all n. If all βi ă m,
then we certainly can choose ε ą 0 such that all βi ă m´ ε and hence

rNn “ Oppnpm´εqq.

Assume now that β0 “ m and all other βi ă m. Since | rNn| ď pnm we must have all k0,j “ 1
(i.e., no multiplicity). Then for suitable aj P C, and all ε ă m ´maxi‰0tβiu, we have, when
n is sufficiently large

| rNn ´ p
nm

ÿ

j

ajα
n
0,j | “ Oppnpm´εqq.
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Let w1n “
ř

j ajα
n
0,j . Since αi,j are roots of unity, the sequence w1n pn ě 0q is periodic, say

with period N , i.e.: w1n “ w1n`N . Then by

|wn ´ w
1
n| “ Opp´nεq,

we have
wn ´ wn`1 ď wn ´ wn`N ď |w

1
n ´ w

1
n`N | `Opp

´nεq “ Opp´nεq.

This completes the proof.

Remark 12. The integral in the lemma is called local zeta integral. The same result also holds
for archimedean local fields.

Corollary 4.4. There exists ε ą 0 such that the function

mε : x “ pX,wq P V ÞÑ |DpXq|´1{2´ε log |∆pxq|

is locally integrable on V.

Proof. Let Ω be a compact subset of V. In Young’s inequality

ab ď
ap

p
`
bq

q
, a, b, p, q ą 0,

1

p
`

1

q
“ 1,

we let p “ 1` ε1 to obtain

mεpxq ď
|DpXq|´p1{2`εqp1`ε1q

1` ε1
`
| log |∆pxq||q

q
.

We now need to use the Lie algebraic version of [28, Theorem 15], namely: there exists
ε2 ą 0 such that the function X ÞÑ |∆pXq|´1{2´ε2 is locally integrable on UpW q. This implies
that for an appropriate choice of ε, ε1, the first term above is locally integrable on UpW qˆW .
Lemma 4.3 implies that the second term is also locally integrable. This completes the proof.

In summary we have showed that

Corollary 4.5. For any f P C8c pVq, we have

• The absolute value of the orbital integral x ÞÑ |Opx, fq| is locally integrable on V.

• If X P hpF q is regular semisimple, the function w ÞÑ |OppX,wq, fq| is locally integrable
on W .

• If w PW is regular semisimple, the function X ÞÑ |OppX,wq, fq| is locally integrable on
hpF q.
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A relative local trace formula We now show a local trace formula for the H-action on
V. We fix an H-invariant bilinear form

x¨, ¨y : V ˆ V Ñ F

such that its restriction to any invariant subspace is non-degenerate (obviously such form
exists). We would like to consider the partial Fourier transform with respect to an invariant
subspace V0 of V. Let VK0 be the orthogonal complement of V0 and we write x “ py, zq
according to the decomposition V “ V0 ‘ VK0 . We define a partial Fourier transform FV0f :

FV0fpy, zq “

ż

V0

fpy1, zqψpxy, y1yqdy1, f P C8c pVq, y P V0, z P VK0 .(4.6)

We will choose the self-dual measure on V0. Then the fact that Fourier transform is an
isometry on L2 space can be written as:

ż

V0

f1pyqf2pyqdy “

ż

V0

FV0f1pyqFV0f2pyqdy.(4.7)

It is clear that, for two orthogonal subspace V0,V1:

FV0‘V1 “ FV0 ˝ FV1 “ FV1 ˝ FV0 .

Returning to our case, V is UpW q ˆ W (i.e., either gln ˆ Fn ˆ Fn for E “ F ˆ F , or
UpW q ˆW for a Hermitian space W for a quadratic field E extension). In each case we have
an abelian 2-group of Fourier transforms generated by the two partial transforms FUpW q, FW .

We now ready to prove a local relative trace formula for Lie algebras. The name comes
from the analogous (but much more difficult to prove) result of Waldspurger ([57]).

Theorem 4.6. Let V be UpW q ˆ W and V0 an invariant-subspace. We write x “ py, zq
according to the decomposition V “ V0 ‘ VK0 . Fix a regular semisimple z P VK0 . For f1, f2 P

C8c pVq, we define an iterated integral

T pf1, f2q “

ż

V0

˜

ż

HpF q
f1ppy, zq

hqηphqdh

¸

f2py, zqdy,(4.8)

where η is trivial in the unitary case. Then we have

T pf1, f2q “ T p pf1, qf2q,(4.9)

where pf ( qf , resp.) denotes the partial Fourier transform associated to V0, with respect to ψ
(ψ´1, the complex conjugate of ψ, resp.).

Proof. We consider the unitary case. The linear case is similar. The idea is the same as
in Harish-Chandra’s work on the representability of the character of a supercuspidal repre-
sentation. Take a sequence of increasing compact subsets Ωi of H such that H “ Y8i“1Ωi.
Define

Oipx, fq “

ż

Ωi

fpxhqdh.
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Then it is clear that, for a regular semisimple X:

Opx, fq “ lim
iÑ8

Oipx, fq.

By (4.7) we have for any f1, f2 P C8c pVq:
ż

V0

f1ppy, zq
hqf2py, zqdy “

ż

V0

pf1ppy, zq
hq qf2py, zqdy,

noting that the Fourier transform commutes with the H-action. Therefore we have

lim
iÑ8

ż

Ωi

ˆ
ż

V0

f1ppy, zq
hqf2py, zqdy

˙

dh “ lim
iÑ8

ż

Ωi

ˆ
ż

V0

pf1ppy, zq
hq qf2py, zqdy

˙

dh.(4.10)

As Ωi is compact, we may interchange the order of integration. Obviously we have |Oippy, zq, f1q| ď

|Oippy, zq, |f1|q|. When z is regular semisimple, by Corollary 4.5 the function y ÞÑ |Oppy, zq, |f1|q

is locally integrable on V0. By Lebesgue’s dominated convergence theorem we obtain

lim
iÑ8

ż

Ωi

ˆ
ż

V0

f1ppy, zq
hqf2py, zqdy

˙

dh “

ż

V0

Oppy, zq, f1qf2py, zqdy “ T pf1, f2q.

Similarly we obtain T p pf1, qf2q from the right hand side of (4.10). This completes the proof.

A consequence. Now we specialize to the case n “ 1. We deduce the representability of
the Fourier transform of an orbital integral on W “ M ˆM˚ where M is a one dimensional
F -vector space, M˚ its dual. We than have H “ GLpMq » GL1,F acting on W .

Corollary 4.7. For any quadratic character η (possibly trivial), the Fourier transform of the
orbital integral

pOwpfq :“ ωpwq

ż

H

pfpwhqηphqdh, f P C8c pW q,(4.11)

(here ωpwq is the transfer factor defined in (3.7) for n “ 1) is represented by a locally constant
H-invariant function on the regular semisimple locus Wrs denoted by κηpw, ¨q, i.e.: for any
f P C8c pW q we have

pOwpfq “

ż

W
fpw1qωpw1qκηpw,w1qdw1.

The same result holds for the unitary case. Moreover, we may let F be a product of fields and
the same result holds.

Proof. The proof is along the same line as the proof of Harish-Chandra of the representability
of Fourier transform of orbital integrals ([29, Lemma 1.19, pp.12]). With the local trace
formula Theorem 4.6, it remains to note that the Howe’s finiteness conjecture holds for the
H-action on W , by [49, Theorem 6.1]. In the next two subsections we will prove a more
explicit result when η is nontrivial quadratic.
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Obviously the kernel function κηpw,w1q can be viewed as a locally constant function on
Wrs ˆWrs invariant under H ˆH.

Remark 13. Unfortunately, the Howe’s finiteness conjecture (cf. [49, Theorem 6.1]) fails for
the H-action on glnˆFnˆF

n when n ě 2. Therefore the proof of Harish-Chandra ([29]) does
not work and the representability of the Fourier transform of H-orbital integral remains open
when n ě 2.

4.2 A Davenport–Hasse type relation

We show a Davenport–Hasse type relation between two “Kloosterman sums”. It will be used
to show that the Fourier transforms perserve smooth transfer when n “ 1.

Local constants. We first recall the definition and some basic properties of the Langlands
constant ([4, §29, §30]). Fix a non-trivial character ψ of F . For a field extension K{F of local
fields, we define a character of K by ψK “ ψ ˝ trK{F . Let 1K be the trivial character of the
Weil group WK . Then the Langlands constant is defined to be

λK{F pψq :“
εpIndK{F 1K , s, ψq

εp1K , s, ψKq
,(4.12)

which is a constant independent of s ([4, §30]). In particular, it is given by

λK{F pψq :“ εpIndK{F 1K , 1{2, ψq.(4.13)

The character of the abelianization W ab
F » Fˆ:

ηK{F :“ detpIndK{F 1Kq(4.14)

is a quadratic character. For a P Fˆ we denote by ψa the character of F defined by ψapxq “
ψpaxq. We then have

λK{F pψaq “ ηK{F paqλK{F pψq.

Moreover we have
λK{F pψq

2 “ ηK{F p´1q.

In particular, λK{F pψq P µ4 is a fourth root of unity.
We first show that the epsilon factor is essentially a Gauss sum. Let ψ be a nontrivial

additive character and dx be the self-dual measure on F . We choose a Haar measure dˆx “ dx
|x|

on Fˆ. For a quasi-character χ of Fˆ, we may define its real exponent Repχq to be the unique
real number r such that |χpxq| “ |x|r for all x P Fˆ. We denote pχ “ χ´1| ¨ |. Let γpχ, ψq be
the gamma factor in Tate’s thesis ([4, §23]).

Lemma 4.8. The gamma factor γpχ, ψq as a meromorphic function of χ (namely, its value
at χ| ¨ |s is meromorphic for s P C) is given by

γpχ, ψq “

ż

Fˆ
ψpxqpχpxq

dx

|x|
“

ż

F
ψpxqχ´1pxqdx.(4.15)
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Here the right hand side is interpreted as

ż

|x|ăC
ψpxqpχpxq|x|s

dx

|x|
|s“0

for any C large enough. In particular, the gamma factor γpχ, ψq is holomorphic when Repχq ă
1 and its value is given by an absolutely convergent integral

γpχ, ψq “

ż

|x|ăC
ψpxqχ´1pxqdx

when C large enough.

Proof. By definition, we have ([4, §23])

γpχ, ψq “
ζp pf, pχq

ζpf, χq
.

Note that it does not depend on the choice of any Haar measure on Fˆ. We have chosen dx
|x| .

Let fn “ 11`$nOF . Then we have

xfnpxq “ ψpxqp1$nOF pxq “ ψpxq|$|np1OF px$
nq.

If n is larger than the conductor of χ, we have

ζpfn, χq “ |$|
nvolpOF q.

Let m be the integer such that p1OF “ volpOF q ¨ 1$´mOF . Then we have

ζpxfn, pχq “

ż

Fˆ
ψpxq|$|np1OF px$

nqpχpxq
dx

|x|

“ volpOF q|$|n
ż

$´n´mOF
ψpxqpχpxq

dx

|x|
.

The right hand side is interpreted in the sense of analytic continuation. Therefore we have for
n large enough:

γpχ, ψq “

ż

$´n´mOF
ψpxqpχpxq

dx

|x|
.

This completes the proof.

Kloosterman sums. We have some Kloosterman sums. Let E{F be a (genuine) quadratic
field extension. Our first Kloosterman sum is defined for a “ AĀ P NEˆ:

Φpaq “ ΦE{F paq :“

ż

E1

ψEpAxqd
ˆx.(4.16)
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The measure on E1 is chosen such that for all φ P C8c pEq:
ż

Eˆ
φpXq

dX

|X|E
“

ż

Fˆ

ż

E1

φpAtqdt dˆa,

where NA “ a and dX is the self-dual measure on E with respect to the character ψE .
Our second Kloosterman sum is defined for a P Fˆ:

Ψpaq “ ΨE{F paq :“

ż

Fˆ
ψpx`

a

x
qηpxqdˆx, η “ ηE{F .(4.17)

The right hand side is interpreted as
ż

1{Că|x|ăC
ψpx`

a

x
qηpxqdˆx(4.18)

for sufficiently large C (depending on a). Note that this integral becomes a constant when C
is large enough.

We also define some auxiliary functions on Fˆ indexed by C P R:

ΨCpaq :“

ż

|a|{Că|y|ăC
ψpa{y ` yqηpyqdˆy, a P Fˆ.(4.19)

We set Ψ8 “ Ψ. It is clear that, as C Ñ8, the functions ΨC converge to Ψ8 pointwisely.

Lemma 4.9. The function ΨC (possibly C “ 8) is a locally constant function on Fˆ. More-
over, there are constants β1, β2 independent of C P RY t8u such that

|ΨCpaq| ď β1| log |a|| ` β2

for all a P Fˆ.

Proof. Let B be such that ψpxq “ 1 if and only if |x| ď B. If |a| ă B2, either |x| ă B or
|a{x| ă B. So we may bound the integral (4.18) by

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|x|ăB,|a|{Că|x|ăC
ψpa{xqηpxqdˆx

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|x|ěB,|a|{Că|x|ăC
ψpxqηpxqdˆx

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since ψ is oscillating when |x| ě B, it is easy to see that the second term is bounded above
by a constant independent of a and C. The first term is equal to

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|x|ąa{B,|a|{Că|x|ăC
ψpxqηpxqdˆx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż

a{Bă|x|ăB,|a|{Că|x|ăC
ψpxqηpxqdˆx

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|x|ěB,|a|{Că|x|ăC
ψpxqηpxqdˆx

ˇ

ˇ

ˇ

ˇ

ˇ

.

The first term of the last line is at most
ż

a{Bă|x|ăB
1 dˆx,

which is of the form β1| log |a| ` β2 for some constants β1, β2. Now, possibly enlarging β2 by
a constant independent of a and C, we complete the proof.
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We now study the asymptotic behavior of ΨCpaq and Φpaq when |a| is large.

Lemma 4.10. There is constants A and α independent of C P R Y t8u such that when
|a| ą A, we have

|ΨCpaq| ă α|a|´1{4, |Φpaq| ă α|a|´1{4.

Proof. The proof follows the strategy of [57, Proposition VIII.1]. We only prove the case for
ΨC since the same proof with simple modification also applies to Φ.

Denote by v : Fˆ Ñ Z the valuation on F . We may choose a constant c such that whenever
m ě c, the exponential map

$mOF Ñ Fˆ

t ÞÑ et “
ÿ

iě0

ti

i!

converges and we have for t P $mOF :

p˚q

#

vp e
t`e´t

2 ´ 1q “ vpt2{2q.

vp e
t´e´t

2 q “ vptq.

Let Km be the image of $mOF . It is easy to see that Km “ 1 ` $mOF . Let d be the
conductor of ψ, i.e.: ψpxq “ 1 if vpxq ď d and ψpxq ‰ 1 for some x P F with vpxq “ d´ 1.

Now we choose ` P Z such that

p˚˚q ` ą 4c´ 2d` 10.

Now assume that vpaq ă ´`. To explain the idea, we first claim that when vpaq ă ´`,
ΨCpaq “ 0 unless a P pFˆq2. To see this, suppose that a is not a square. Then we have
|a{x˘ x| “ maxt|x|, |a{x|u ě |a|1{2 and

ΨCpaq “
ÿ

vpa{CqăiăvpCq

ż

vpxq“i
ψpax´1 ` xqηpxqdˆx.(4.20)

Where we understand vpCq “ ´ logq C, where q “ #OF {p$q. For a fixed i, let n ą c be such
that

n`minti, vpaq ´ iu ă d ă 2n`minti, vpaq ´ iu.

Such n exists due to p˚˚q. Then we have a nontrivial character of $nOF defined by:

t ÞÑψpax´1e´t ` xetqqηpxq

“ψppax´1 ´ xqt` pax´1 ` xqt2{2` ...qηpxq

“ψppax´1 ´ xqtqηpxq.
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Hence in (4.20) the integral over vpxq “ i can be broken into a sum of integrals over xKn

where x runs over $iOF {Kn. Using the exponential map, each term is of the form:

|x|´1

ż

Kn

ψpax´1k´1 ` xkqηpxqdˆk

“|x|´1

ż

$nOF
ψpax´1e´t ` xetqqηpxqdt

“|x|´1ηpxqψppax´1 ´ xqtqdt “ 0.

This completes the proof the claim.
Now we may assume that a “ b2 is a square. A change of variable yields:

ΨCpaq “ ηpbq

ż

|b{C|ăxă|C{b|
ψpbpx´1 ` xqqηpxqdˆx.(4.21)

For a fixed x, we look for an integer n such that

#

n` vpbq ` vpx´ x´1q ă d,

2n` vpbq ą d.

For example we may take n “ 1`rpd´vpbqq{2s ą c (due to p˚˚q). Then the condition becomes:

p˚ ˚ ˚q vpx´ x´1q ă d´ 1´ vpbq ´ rpd´ vpbqq{2s “ rpd´ 1´ vpbqq{2s.

If this last inequality holds, we have vpxk ´ x´1k´1q “ vpx´ x´1q for k P Kn: this is obvious
if vpxq ‰ 0; if vpxq “ 0, then the difference

px´ x´1q ´ pxk ´ x´1k´1q “ xp1´ kqp1` x´2k´1q

has valuation at least vp1´ kq ě n ą vpx´ x´1q. In particular, for those x satisfying p˚ ˚ ˚q,
we may write the integral in (4.21) as a disjoint union of the form

ÿ

x

|x|´1ηpxq|x|´1

ż

$nOF
ψpbpx´1 ´ xqtqdt “ 0.

Therefore, we have proved that the only possible non-zero contribution comes from those x
violating p˚ ˚ ˚q. In particular, |ΨCpaq| is bounded by the volume of x such that vpx´x´1q ě

rpd ´ 1 ´ vpbqq{2s. It is easy to see that the volume is bounded by α|b|´1{2| “ α|a|´1{4 for
some constant α independent of C.

Remark 14. Just like [57, Proposition VIII.1], the same argument in the proof above actually
yields a formula of Ψpaq and Φpaq for large a.
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A Davenport–Hasse type relation. We first establish one more lemma.

Lemma 4.11. When 3
4 ă Repχq ă 1, we have

γpχ, ψqγpχη, ψq “

ż

F
Ψpaqχ´1paqda,

where the integral converges absolutely. Similarly, when 3
4 ă Repχq ă 1 we have

γpχE , ψEq “

ż

F
Φpaqχ´1paqda.

Proof. By Lemma 4.8, we have for C large enough

γpχ, ψqγpχη, ψq “

ż

|x|ăC
ψpxqpχpxqdˆx

ż

|x|ăC
ψpyqxχηpyqdˆy.

This is equal to

ż

|x|,|y|ăC
ψpx` yqpχpxyqηpyqdˆxdˆy

“

ż

Fˆ

˜

ż

|a|{Că|y|ăC
ψpa{y ` yqηpyqdˆy

¸

pχpaqdˆa

“

ż

Fˆ
ΨCpaqd

ˆa.

The function |ΦCpaq| is bounded by β1| log |a|| ` β2 when a is small by Lemma 4.9 and
bounded by α|a|1{4 when a is large by Lemma 4.10. The first result now follows from Lebesgue’s
dominance convergence theorem. Similarly, the second result follows from the fact that |Φpaq|
is bounded by a constant when |a| is small, and by α|a|1{4 when |a| is large.

The Davenport–Hasse type relation alluded in the title is as follows.

Theorem 4.12. We have for all a P Fˆ:

Ψpaq “ ΦpaqλE{F pψq.

Proof. Note that LpIndK{F 1K , sq “ Lp1K , sq. Thus we have an equivalent form of the Lang-
lands constant by (4.12):

λK{F pψq “
γpIndK{F 1K , s, ψq

γp1K , s, ψKq
.

Now let K “ E. Then for all characters χ of Fˆ such that 3
4 ă Repχq ă 1, we have by Lemma

4.11:
ż

F
Ψpaqχ´1paqda “ λE{F pψq

ż

F
Φpaqχ´1paqda.

Both integrals converge absolutely. The theorem now follows easily.
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4.3 A property under base change

For later use we need a property of the Langlands constant (4.12) under base change. If
K “ K1 ˆ K2 ˆ ... ˆ Km, we define λK{F pψq as the product

śm
i“1 λKi{F pψq. Similarly,

εpIndK{F 1K , 1{2, ψq is by definition
śm
i“1 εpIndKi{F 1Ki , 1{2, ψq. Recall that for an arbitrary

field extension K{F of degree d, we may define a discriminant δK{F P F
ˆ{pFˆq2 as follows.

Choose an F -basis α1, ..., αd of K and let σ1, ..., σd be all F -embeddings of K into an algebraic
closure of F . Then it is easy to see that

detpσjpαiqq
2
1ďi,jďd P F

ˆ.(4.22)

And if we change the F -basis, this only changes by a square in Fˆ. So we define δK{F to be
the class in Fˆ{pFˆq2 of the determinant (4.22). If K “ F pαq and α has minimal polynomial
f , then δK{F is the class of the discriminant of the polynomial f . In particular, in this case

we can choose a representative of δK{F such that it lies in p´1qdpd´1q{2NK{FK
ˆ. Finally, for

a quadratic character η of Fˆ, it makes sense to evaluate ηpδK{F q. We extend the definition
in the evident way to a product of fields K “ K1 ˆK2 ˆ ...ˆKm.

The property we need is the following.

Theorem 4.13. Let E{F be a quadratic field extension and let F 1{F be a field extension of
degree d. Let E1 “ E bF F

1. Then we have

λE1{F 1pψF 1q “ λdE{F pψF qηE{F pδF 1{F q.(4.23)

Proof. First of all we have the following simple observation. If we replace ψ by ψa, a P F
ˆ,

the right hand side of (4.23) changes by a factor ηE{F paq
d and the left hand side of (4.23)

changes by a factor ηE1{F 1paq “ ηE{F pNF 1{Faq “ ηE{F pa
dq. Therefore it suffices to prove the

identity for any one choice of ψ.
Note that (4.23) is equivalent to

εpηE1{F 1 , 1{2, ψF 1q “ εpηE{F , 1{2, ψF q
d ¨ ηE{F pδF 1{F q.

Lemma 4.14. If E{F is unramified, then (4.23) holds.

Proof. We may choose ψ to have conductor equal to zero. Since ηE{F is unramified, we have

εpηE{F , 1{2, ψF q “ 1.

Now ψF 1 has conductor denoted by k which is equal to the valuation of the different DF 1{F ,

namely DF 1{F “ p$F 1q
k. Let e be the ramification index and f “ d{e.

Case I: f is even. Then E Ă F 1 is a subfield. In particular, NF 1{FF
1ˆ Ă NE{FE

ˆ. In
this case, the left hand side of (4.23) is equal to 1 as ηE1{F 1 is trivial. As we may choose a

representative of δF 1{F in p´1qdpd´1q{2NK{FK
ˆ Ă NE{FE

ˆ, we see that ηE{F pδF 1{F q “ 1

Case II: f is odd. Then εpηE{F , 1{2, ψF q “ p´1qk. Note that NF 1{F p$F 1q P p$F q
fOˆF .

So we have NF 1{FDF 1{F “ p$F q
kf . Since f is odd, kf and k have the same parity. Since

the valuation of NF 1{FDF 1{F has the same parity as the valuation of δF 1{F , we see that

ηE{F pδF 1{F q “ p´1qkf “ p´1qk as desired.

52



Lemma 4.15. If E{F is archimedean, then (4.23) holds.

Proof. The case F “ C is obvious. Now we assume that F “ R and E “ C. Then the only
non-trivial case we need to consider is when F 1 “ C. Then the left hand side is equal to one.
For the right hand side, we have

λE{F pψq
2 “ ηE{F p´1q “ ´1.

And
ηE{F pDF 1{F q “ ´1.

This completes the proof.

We now treat the general case for E{F . We use a global argument. To do so we want to
globalize the quadratic extension E{F . We use the following lemma from [15, §14].

Lemma 4.16. Let E{F be a quadratic extension of non-archimedean local fields. Then there
exists a totally real number field F with F as its completion at a place v0 of F , and a quadratic
totally imaginary extension E of F with corresponding completion E at v0 such that E is
unramified over F at all finite places different from v0.

Since the global epsilon factor satisfies

εpIndE{F1E , s, ψF q “ εp1E , s, ψEq,

we have a product formula
ź

v

λEv{Fvpψvq “ 1,

where Ev is a product of field extensions of Fv and v runs over all places of F . We choose
a finite extension F 1 of F such that v0 is inert and F 1v0 » F 1. Such choice obviously exists.
Then it is clear that (4.23) holds for all Ev{Fv at those v ‰ v0. By the global identity and
ś

v ηEv{FvpδF 1{F q “ 1, we immediate deduce (4.23) at the place v0. This completes the proof
of Theorem 4.13.

4.4 All Fourier transforms preserve transfer

Now we need to consider simultaneously the general linear case and the unitary case. Let
E{F be a fixed quadratic field extension. We set up some notations. We will use V 1 to denote
glnpF q ˆ Fn ˆ Fn. There are two isomorphism classes of Hermitian spaces of dimension n,
which we will denote by W1,W2 respectively. Then we let Vi denote UpWiq ˆWi for i “ 1, 2.

Note that we have an obvious way to match the partial Fourier transforms on V 1 and Vi.
Recall that all Haar measures to define Fourier transform are chosen to be self-dual.

Theorem 4.17. For any a fixed Fourier transform F , there exists a constant ν P µ4 depending
only on n, ψ,E{F and the Fourier transform F with the following property: if f P C8c pVq and
the pair pfi P C8c pViqqi“1,2 are smooth transfer of each other, so are νFpfq and pFpfiqqi“1,2.

Proof. We now let Fa (Fb, Fc, resp.) be the Fourier transform with respect to the total space
(the subspace UpW q, W , resp.). Consider the following three statements:
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• An: For all E{F , ψ, and Wi of dimension n, there is a constant ν P µ4 with the property:
if f P C8c pV 1q and fi P C8c pViq (i “ 1, 2) match, then so do νFapfq and Fapfiq.

• Bn: For all E{F , ψ, and Wi of dimension n, there is a constant ν P µ4 with the property:
if f P C8c pV 1q and fi P C8c pViq (i “ 1, 2) match, then so do νFbpfq and Fbpfiq.

• Cn: For all E{F , ψ, and Wi of dimension n, if f P C8c pV 1q and fi P C8c pViq (i “ 1, 2)
match, then so do λE{F pψq

´nFcpfq and Fcpfiq.

The theorem follows immediately if we prove the following three claims:

1. An´1 ñ Bn.

2. C1 ô Cn.

3. Bn ` Cn ñ An.

The proofs the three claims are provided below in Lemma 4.18, 4.19, 4.21, respectively.

Lemma 4.18. An´1 ñ Bn.

Proof. We now use pf to denote the Fourier transforms with respect to gln and UpW q. We first
consider the general linear side. We let W “ Fn ˆ Fn and consider it as an F ˆ F -module
of rank n with the Hermitian form pw,wq “ uv if w “ pu, vq P Fn ˆ Fn. We also denote the
normalized orbital integral

OηX,wpfq “ ωpX,wqOX,wpfq, pX,wq P V 1,(4.24)

where ωpX,wq is the transfer factor (3.7), and OX,wpfq is defined by (4.5).
By the local trace formula Theorem 4.6, for w P W with pw,wq ‰ 0, f P C8c pV 1q and

g P C8c pglnpF qq, we have:
ż

glnpF q
OηX,wpfqωpX,wqgpXqdX “

ż

glnpF q
OηX,wp

pfqωpX,wqqgpXqdX.(4.25)

Let pwqK be the orthogonal complement of pF ˆ F qw in W . Up to the H “ GLn,F -action,
we may choose w of the form pe, de1q where e “ p0, ..., 0, 1q and d P Fˆ is the Hermitian norm
pw,wq. Then the stabilizer of w in H can be identified with GLn´1,F (with the embedding
into GLn,F as before). If h P GLn´1pF q, we have OηX,wpfq “ Oη

Xh,wh
pfq “ Oη

Xh,w
pfq. Then

we may rewrite the left hand side of (4.25) as

ż

glnpF q
OηX,wpfqωpX,wqgpXqdX “

ż

QpF q
OηX,wpfq

˜

ż

GLn´1pF q
ωpXh, wqgpXhqdh

¸

dqpXq,

where Qn´1 “ gln{{GLn´1, q is the quotient morphism and the measure is a suitable one on
QpF q such that for all g P C8c pglnpF qq:

ż

glnpF q
gpXqdX “

ż

QpF q

˜

ż

GLn´1pF q
gpXhqdh

¸

dqpXq.
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Note that ωpXh, wq “ ηphqωpX,wq for h P GLn´1pF q. Now it is easy to see that when we
restrict the transfer factor ωpX,wq to X P gln, it is a constant multiple of the transfer factor
we have used to define the GLn´1,F -orbital integral. Moreover, this constant depends only on
w and is denoted by cw. So we have

ż

GLn´1pF q
ωpXh, wqgpXhqdh “ ωpX,wq

ż

GLn´1pF q
gpXhqηphqdh “ cwO

η
Xpgq.

Then this depends only on the GLn´1pF q-orbit of X.
We have a similar result for the right hand side of (4.25). The constant cw is then canceled.

Replacing g by pg, we deduce from (4.25) that
ż

QpF q
OηX,wpfqO

η
XppgqdqpXq “

ż

QpF q
OηX,wp

pfqOηXpgqdqpXq.(4.26)

Note that the Fourier transform here is Fb for GLn-action on V 1 but it is the Fa for the
GLn´1-action on gln.

In the unitary case we also have a similar equality for i “ 1, 2 (without the issue of transfer
factors)

ż

QpF q
OX,wpfiqOXppgiqdqpXq “

ż

QpF q
OX,wppfiqOXpgiqdqpXq.

Here the stabilizer of w in UpW q replaces GLn´1,F . Note that we have identified the categorical
quotient Q with Qi as before.

Now suppose that f Ø pfiq. We want to show that for some constant ν:

νOη
X0,w0p

pfq “ OX0
i ,w

0
i
ppfiq(4.27)

for any strongly regular semisimple pX0, w0q Ø pX0
i , w

0
i q. This would imply the equality for

all matching regular semisimple elements by the local constancy of orbital integrals (Lemma
3.12).

We may choose g Ø pgiq such that

• Both are supported in the regular semisimple locus.

• There exists a small (open and compact) neighborhood U of qpX0q P QpF q with the
following property: (1) the functions on U given by qpXq ÞÑ Oη

X,w0p
pfq and qpXiq ÞÑ

OXi,w0
i
ppfiq are constant; (2) the functions on QpF q given by qpXq ÞÑ OηXpgq and qpXiq ÞÑ

OXpgiq are the characteristic function 1U .

This is clearly possible by Lemma 3.12. For such a choice we have
ż

Q
Oη
X,w0pfqO

ηi
XppgqdqpXq “ Oη

X0,w0
i
p pfq

ˆ
ż

U
dqpXq

˙

, i “ 1, 2.

Now by An´1, we have for some constant ν independent of g, gi

νOηXppgq “ OXippgiq

whenever X Ø Xi. Now the desired equality (4.27) follows immediately for the same constant
ν as in An´1. This proves that An´1 ñ Bn.
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Lemma 4.19. C1 ô Cn.

Proof. It suffices to show C1 ñ Cn. Now we will use pf to denote the Fourier transform with
respect to W “ Fn ˆ F

n and Wi respectively. We want to show that if f and fi match, then
for strongly regular pX,wq Ø pXi, wiq, we have

λE{F pψq
nOηX,wp

pfq “ OXi,wip
pfiq.(4.28)

For a regular semisimple X P glnpF q, let T be the centralizer of X in H and t its Lie algebra.
Then T is isomorphic to

ś

j F
ˆ
j for some field extensions Fj{F of degree nj with

řr
j“1 nj “ n.

For a regular semisimple Xi P UpWiq, let Ti be the centralizer of Xi in Hi and ti its Lie
algebra. Let Ej “ E bF Fj . As X, Xi have the same characteristic polynomial, we know
that Ti is isomorphic to

ś

j ResFj{FE
1
j for the same tuple of field extensions Fj{F . Here

E1 is the kernel (as an algebraic group) of norm homomorphism NE{F : Eˆ Ñ Fˆ. Let
F 1 :“

ś

i Fj , E
1 :“ F 1bF E. By [3, §5], W is a rank one Hermitian space over E1 with unitary

group UpW,E1{F 1q » T . We may identify F 1 with the sub-algebra F rXs Ă gln.
For a more intrinsic exposition, we let M (M˚, resp.) denote Fn (Fn, resp.) and gln “

EndpMq. We may describe the transfer factor as follows:

ωpX,u, vq “ η

ˆ

u^Xu^X2u...^Xn´1u

ω0

˙

, X P EndpMq, u PM,v PM˚,

where ω0 a fixed generator of the F -line ^nFM . If we change the generator ω0, the transfer
factor only changes by a constant in t˘1u.

Then under the action of F 1 “ F rXs, M is a free F 1-module of rank one. In this way,
M˚ “ HomF pM,F q is canonically isomorphic to HomF 1pM,F 1q. Indeed, we may define an
F 1-linear pairing p¨, ¨qF 1 : M ˆM˚ Ñ F 1 such that for all λ P F 1, x PM,y PM˚ we have

trF 1{F pλx, yqF 1 “ pλx, yqF .

Fixing a generator of ^1
F 1M » F 1 we define a transfer factor ωpwq P t˘1u corresponding to

the case n “ 1. We also have a compatibility ηE{F pNF 1{Fxq “ ηE1{F 1pxq and NF 1{Fx “ detpxq
when x P F 1 “ F rXs.

We then have an inversion formula as follows.

Lemma 4.20. For a regular semisimple X P glnpF q with centralizer T »
ś

j ResFj{FGL1,
let pκηpw,w1q be the locally constant T ˆ T -invariant function on Wrs ˆWrs Ñ C given by
Corollary 4.7. Then we have

pOηX,wpfq “ ηE{F pδF 1{F q

ż

QpF 1q
OηX,w1pfqκ

ηpw,w1qdqpw1q,

where Q “ pM ˆM˚q{{ResF 1{FGL1.

Proof. Without loss of generality, we may assume that f “ φ b ϕ, φ P C8c pglnpF qq, ϕ P

C8c pM ˆM˚q. We now see that the orbital integral can be rewritten as

OηX,wpφb pϕq “ ωpX,wq{ωpwq

ż

T zH
φpXhqηphqOηwp

h
pϕqdh

“ ωpX,wq{ωpwq

ż

T zH
φpXhqηphqOηwp

xhϕqdh,
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where we write hϕpwq “ ϕpwh
´1
q.

By Corollary 4.7, we have

Oηwppϕq “

ż

QpF 1q
Oηw1pϕqκ

ηpw,w1qdqpw1q.(4.29)

Reversing the argument we obtain

OηX,wpφb pϕq “ ωpX,wqωpwq

ż

QpF 1q
ωpX,w1qωpw1qOηX,w1pφb ϕqκ

ηpw,w1qdqpw1q.

It is easy to verify that
ωpX,wqωpX,w1q “ ηpδXqωpwqωpw

1q,

where δpXq is the discriminant of the characteristic polynomial of X. In particular, ηpδXq “
ηpδF 1{F q. Note that the product ωpX,wqωpX,w1q (ωpwqωpw1q, resp.) does not depend on the
choice of the generator of the F -line ^nFM (the F 1-line ^1

F 1M “ M , resp.). This completes
the proof.

Similarly we also have an inversion formula in the unitary case with a different kernel
function denoted by κipwi, w

1
iq. Finally we note that the kernel functions are given by the

Kloosterman sums relative to E1{F 1. By Theorem 4.12, we have

κηpw,w1q “ λE1{F 1pψF 1qκipwi, w
1
iq(4.30)

whenever w Ø wi and w1 Ø w1i, i “ 1, 2.
Now the proof of C1 ñ Cn follows from the inversion formulae, the relation between the

kernel functions (4.30) and the base change property of the Langlands constant (Theorem
4.13):

λE1{F 1pψF 1q “ λnE{F pψF qηpδF 1{F q.

Remark 15. It is easy to see that for fixedX,Xi, the statement C1 implies that, up to a constant
multiple, the partial Fourier transform have matching orbital integrals for those elements with
first components X,Xi. The lengthy computation of the Davenport–Hasse relations is to show
that this constant, a priori depending on X,Xi, is indeed independent of the choice of X,Xi.

Lemma 4.21. Bn ` Cn ñ An.

Proof. This is obvious since Fa “ FbFc.
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4.5 Completion of the proof of Theorem 2.6

In §3, we have reduced the existence of transfer on groups to the Lie algebra version: by
Theorem 3.3, it suffices to show Conjecture Sn`1. Obviously, Conjecture Sn`1 is equivalent
to the corresponding assertion on the following subspaces:

sln ˆ Fn ˆ F
n

and for Hermitian Wi, i “ 1, 2:
sUpWiq ˆWi.

Here sln (sUpWiq, resp.) denotes the subspace of gln (UpWiq, resp.) of trace-zero elements.
We let V be either slnpF q ˆ F

n ˆ Fn or sUpWiq ˆWi and let η be the quadratic character
associated to E{F in the former case and the trivial character in the latter. For a distribution
T on V, we denote by pTV , pTW , pTUpW q the three partial Fourier transforms respectively. Similar
notation applies to functions f on V.

The following homogeneity result enables us to deduce the existence of transfer from the
compatibility with Fourier transform.

Theorem 4.22 (Aizenbud). There is no distribution T on V satisfying both of the following
properties

p1q T is pH, ηq-invariant (hence so is pT ).

p2q T , pTV , pTW , pTUpW q are all supported in the nilpotent cone N .

Proof. This is proved in [1, Theorem 6.2.1] for the case η “ 1. But the same proof goes
through for the nontrivial quadratic η.

Corollary 4.23. Set
C0 “ XTKerpT q Ă C8c pVq,

where T runs over all pH, ηq-invariant distributions on V. Then the space C8c pVq is the sum
of C0 and the image of all Fourier transforms of C8c pV ´N q. Equivalently, any f P C8c pVq
can be written as

f “ f0 ` f1 ` pfV2 `
pfW3 ` pf

UpW q
4 ,

where f0 P C0, fi P C8c pV ´N q, i “ 1, 2, 3.

Proof. Let C be the subspace spanned by C0 and the image of all Fourier transforms of
C8c pV ´N q. If the quotient L “ C8c pVq{C is not trivial, then there must exist a nontrivial
linear functional on L. This induces a nonzero distribution T on V. As T is zero on C0,
T is pH, ηq-invariant. As T is zero on C8c pV ´ N q, it is supported on N . Similarly, all
Fourier transforms pTV , pTW , pTUpW q are pH, ηq-invariant and supported on N . This contradicts
Theorem 4.22.

Finally we return to prove Theorem 2.6.
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Proof. By abuse of notation, we still denote by Q “ A2n the categorical quotient of V by
H. By the localization principle Proposition 3.8, it is enough to prove the existence of local
transfers at all z P QpF q (not necessarily regular semisimple elements). We will prove this
by induction on n. If z P QpF q is non-zero, the stabilizer of z is strictly smaller than H. By
Proposition 3.16, the local transfer around z is implied by the local transfer around 0 for the
sliced representations. The sliced representations are (possibly a product) of the same type
with smaller dimension (with possibly a base change of the base field F ). Then by induction
hypothesis, we may assume the existence of local transfers at all non-zero semisimple z P QpF q.
Therefore, by the localization principle Proposition 3.8 (or, what its proof shows), we know
the existence of smooth transfer for functions supported away from the nilpotent cone. By
Theorem 4.17 on the compatibility with Fourier transforms, this implies the existence of
smooth transfer for functions pf where f is supported away from the nilpotent cone and pf is
one of the three Fourier transforms. By Corollary 4.23, we have proved the existence of smooth
transfer for all functions f (those in V0 clearly admit smooth transfers). This completes the
proof of Theorem 2.6.
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A Spherical characters for a strongly tempered pair.
By Atsushi Ichino and Wei Zhang

2

Let F be a non-archimedean local field. We consider a pair pG,Hq where G is a reductive
group and H is a subgroup. We will also denote by G,H the sets of F -points. We will assume
that H a spherical subgroup in the sense that X :“ G{H with the G-action from left is a
spherical variety. Following [54, sec. 6], we say that the pair pG,Hq is strongly tempered if for
any tempered unitary representation π of G, and any u, v P π, the associated matrix coefficient
φu,vpgq :“ xπpgqu, vy (x¨, ¨y is the Hermitian G-invaraint inner product) satisfies

φu,v|H P L
1pHq.

To check whether a pair pG,Hq is strongly tempered, one uses the Harish-Chandra function
Ξ. Let π0 be the normalized induction of the trivial representation of a Borel B of G and let
v0 be the unique spherical vector such that xv0, v0y “ 1. Then Ξ is the matrix coefficient:

Ξpgq “ xgv0, v0y.

We have Ξpgq ě 0 for any g P G. Then pG,Hq is strongly tempered if Ξ|H P L
1pHq.

The major examples are those appearing in the Gan–Gross–Prasad conjecture:

• Let V be an orthogonal space of dimension n ` 1 and W a codimension one subspace
(both non-degenerate). Let SOpV q and SOpW q be the corresponding special orthogonal
groups. Let G “ SOpW q ˆ SOpV q, and let H Ă G be the graph of the embedding
SOpW q ãÑ SOpV q induced by W ãÑ V .

• G “ GLn ˆ GLn`1, H is the graph of the embedding of GLn ãÑ GLn`1 given by
g ÞÑ diagpg, 1q.

• Let E{F be a quadratic extension of fields. Let V be a Hermitian space of dimension
n` 1 and W a codimension one subspace (both non-degenerate). Let UpV q and UpW q
the corresponding unitary groups. Let G “ UpW q ˆUpV q, and let H Ă G be the graph
of the embedding UpW q ãÑ UpV q induced by W ãÑ V .

A proof of the fact that these pair pG,Hq are strongly tempered can be found in [31] for the
orthogonal case and [26] for the linear and unitary cases.

Assume that pG,Hq are strongly tempered. Then for any tempered representation π of G,
following [31] we may define a matrix coefficient integration

νpu, vq :“

ż

H
xπphqu, vydh.

Obviously ν P HomHˆHpπ b rπ,Cq. The integral is absolutely convergent by the strong tem-
peredness.

The following is a conjecture of Ichino–Ikeda in their refinement of the Gan–Gross–Prasad
conjecture.

2Atsushi Ichino: Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Ky-
oto 606-8502, Japan. Email: ichino@math.kyoto-u.ac.jp
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Theorem A.1 (Sakellaridis–Venkatesh,[54]). Assume that pG,Hq is strongly tempered and
X “ G{H is wavefront. Let π be an irreducible representation. Assume that π is a discrete
series representation or π “ IndGP pσq for a discrete series representation σ of the Levi of a
parabolic subgroup P . Then HomHpπ,Cq ‰ 0 if and only if ν does not vanish identically.

The result is also proved in the orthogonal case by Waldspurger.
For the rest of the appendix, let π be a tempered representation. We further assume that

dim HomHpπ,Cq ď 1.

All the examples we list earlier satisfies this condition.
Let ` P HomHpπ,Cq. Then we define a spherical character associated to ` to be a distri-

bution on G such that

θπ,`pfq :“
ÿ

vPBpπq
`pπpfqvq`pvq, f P C8c pGq,

where Bpπq is an orthonormal basis of π. The distribution is bi-H-invariant for the left and
right translation by H. Obviously the distribution θπ,` is non-zero if and only if the linear
functional ` is non-zero.

This note is to prove the following:

Theorem A.2. Assume that ` ‰ 0. Fix any open dense subset Gr of G. Then the restriction
of the distribution θπ,` to Gr is non-zero. Equivalently, there exists f P C8c pGrq such that
θπ,`pfq ‰ 0.

We make some preparation first. By Theorem of Sakellaridis–Venkatesh above, there exist
v0 P π such that

`pvq “

ż

H
xπphqv, v0ydh, v P π.

Lemma A.3. For all f P C8c pGq, we have

θπ,`pfq “

ż

H

ż

H

ˆ
ż

G
fpgqΦph2gh1qdg

˙

dh1dh2,

where

Φpgq “ xπpgqv0, v0y, g P G.(A.1)

Proof. The proof is analogous to that of [46, Thm. 6.1]. We may rewrite θ as

θπ,`pfq “
ÿ

vPBpπq
`pπpfqvq`pvq

“
ÿ

vPBpπq

ż

H
xv, πpf˚qπph´1qv0ydh

ż

H
xπph´1qv0, vydh.
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By ϕ “
ř

vPBpπqxϕ, vyv for any ϕ P π, we have

θπ,`pfq “
ÿ

vPBpπq

ż

H

ż

H
xπph´1

1 qv0, πpf
˚qπph´1

2 qv0ydh1dh2

“

ż

H

ż

H

ˆ
ż

G
fpgqxπph2gh1qv0, v0ydg

˙

dh1dh2.

We consider the orbital integral of the matrix coefficient Φ as in Lemma A.3:

Opg,Φq “

ż

H

ż

H
Φph1gh2qdh1dh2,(A.2)

as well as the orbital integral Opg,Ξq of the Harish-Chandra function Ξ. The following lemma
shows that the integral (A.2) converges for all but a measure-zero set of g P G.

Lemma A.4. The function g ÞÑ Opg,Ξq on G is locally L1. Equivalently, for any f P C8c pGq,
the following integral is absolutely convergent

ż

G
|fpgqOpg,Ξq|dg ă 8.

Proof. Consider a special maximal compact open subgroup K of G such that we have the
following relation for a suitable measure on K:

ż

K
Ξpgkg1qdk “ ΞpgqΞpg1q.(A.3)

Such K exists ([53]). Without loss of generality, we may assume that f is the characteristic
function of KgK for some g P G. We then have

ż

G
|fpgqOpg,Ξq|dg “

ż

K

ż

K

ż

H

ż

H
Ξph1k1gk2h2qdh1dh2dk1dk2.

By (A.3) this is equal to
ˆ
ż

K

ż

H
Ξph1k1gqdh1dk1

˙ˆ
ż

H
Ξph2qdh2

˙

.

By (A.3) again, we obtain

Ξpgq

ˆ
ż

H
Ξph1qdh1

˙ˆ
ż

H
Ξph2qdh2

˙

ă 8.

By Fubini theorem, this shows
ż

G
|fpgqOpg,Ξq|dg ă 8.
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Lemma A.5. Let Φ be the matrix coefficient in (A.1). The function g ÞÑ Opg,Φq on G is
locally L1 and for any f P C8c pGq, we have

θπ,`pfq “

ż

G
fpgqOpg,Φqdg.

Proof. For any tempered representation π of G and a matrix coefficient φu,v associated to
u, v P π, we have

|φu,vpgq| ď cΞpgq, g P G

for some constant c ą 0. By Lemma A.4, the function g ÞÑ fpgqOpg,Ξq is in L1pGq. In
particular, this implies that the triple integral

ż

G

ż

H

ż

H
|fpgq|Ξph2gh1qdh1dh2dg

is absolutely convergent. By Fubini theorem we may interchange the order of integration in
the following:

ż

G

ż

H

ż

H
fpgqΦph2gh1qdh1dh2dg “

ż

H

ż

H

ˆ
ż

G
fpgqΦph2gh1qdg

˙

dh1dh2.

This is equal to θπ,`pfq by Lemma A.3.

Now we return to prove Theorem A.2. Since θπ,` is non-zero, there exists f P C8c pGq such
that

θπ,`pfq ‰ 0.

Equivalently, by Lemma A.5,
ż

G
fpgqOpg,Φqdg ‰ 0.

As Gr is open and dense, we may choose fn P C8c pGrq, such that point-wisely on Gr we have

lim
nÑ8

fn “ f.

Without loss of generality, we may assume that f ě 0 point-wisely and f´fn ě 0 point-wisely.
Then we have

|pfpgq ´ fnpgqqOpg,Φq| ď 2fpgq|Opg,Φq|

which is integrable on G by Lemma A.4. By Lebesgue’s dominated convergence theorem, we
have

lim
nÑ8

ż

G
pfpgq ´ fnpgqqOpg,Φqdg “ 0.

Since
ş

G fpgqOpg,Φqdg ‰ 0, we have for n large enough,
ż

G
fnpgqOpg,Φqdg ‰ 0,

or equivalently,
θπ,`pfnq ‰ 0.

As fn P C8c pGrq, this completes the proof of Theorem A.2.
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Remark 16. When comparing with the property of the usual character as established by
Harish-Chandra, some questions remain for the spherical characters in this notes. For example,
is the function g ÞÑ Opg,Φq continuous or even locally constant on an open dense subset? If
π is super-cuspidal, one may prove that the function g ÞÑ Opg,Φq is locally constant on some
open dense subset in the unitary case listed in the examples.

B Explicit étale Luna slices

In this appendix, we construct étale Luna slices explicitly (Theorem B.5). We will first describe
the sliced representations at a semisimple element of S or UpV q. Then we exhibit an étale
Luna slice at x. Some of the key construction is already in [51]. But we need to show that
their construction actually gives étale Luna slices. The steps are close to the Harish-Chandra’s
descent method (cf. [40]).

Sliced representations at semisimple elements. We start with UpV q where V “ W ‘

Eu. It suffices to consider UpW q ˆW . We may write an element in UpW q ˆW as pX,wq,
X P UpW q, w P W . Denote by W2 the subspace of W generated by Xiw, i ě 0. By [51,
Theorem 17.2], for pX,wq to be semisimple, it is necessary that W2 is a non-degenerate
subspace. In this case, we have an orthogonal decomposition W “ W1 ‘ W2. Then X
stabilizes both subspaces and we may write X “ diagrX1, X2s for Xi P UpWiq. Then pX,wq
is semisimple if and only if X2 is semisimple (in the usual sense) in UpW2q. It is also self-
evident that pX2, wq defines a regular semisimple element relative to the action of UpW2q on
UpW2q ˆW2. Then the stabilizer of pX,wq is isomorphic to UpW1qX1 , the stabilizer of X1

under the action of UpW1q. It is a product of the restriction of scaler of unitary group of
lower dimension over an extension of F (including the general linear group). Let UpW1qX1

be the respective Lie algebra. Then UpW1qX1 acts on UpW1qX1 ˆW1. This representation of
UpW1qX1 is a product of representations of the same type (including the general linear case).
The sliced representation at x is then isomorphic to the product of the above representation
of UpW1qX1 on UpW1qX1 ˆW1 and the representation of the trivial group on the normal space
at pX2, wq of UpW2q-orbit of pX2, wq in UpW2q ˆW2.

We have a similar description for Sn (cf. [51], [3]). Indeed we consider an equivalent
version: the restriction of the adjoint action of GLn`1,F on gln`1,F to GLn,F . We describe the
general form of a semisimple element in the Lie algebra gln`1,F . Let

x “

ˆ

X u
v d

˙

, X P gln,F ,(B.1)

where u P Fn, v P Fn and we use Fn (Fn resp.) to denote the n-dimensional space of column
(row, resp.) vectors. There is an obvious pairing between Fn and Fn. Let U2 be the subspace
of Fn spanned by u,Xu, ...,Xnu and similarly V2 the subspace of Fn spanned by v, vX, ..., vXn.
And let V1 :“ UK2 Ă Fn (U1 :“ V K2 , resp.) be the orthogonal complement of U2 (V2, resp.).
Then for x to be semisimple, it is necessary that Fn (Fn, resp.) is the direct sum of UK2 and
V2 (V K2 and U2, resp.). Assuming this, according to the decomposition Fn “ U1‘U2, we may
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write X “

ˆ

X11 X12

0 X22

˙

. Then by [51, §8], for such x to be semisimple, it is necessary and

sufficient that X11 P EndpU1q is semisimple in the usual sense and X12 “ 0.

Some auxiliary construction. Now we construct étale Luna slices for semisimple elements.
As we shall see, the general case is basically a composition of two extreme cases:

1) the case w “ 0 (namely, r “ 0 minimal),

2) the case x “ pX,wq is regular semisimple (namely, r “ 0 maximal).

The first case is essentially the same as the classical case (the Luna slice for the adjoint
representation, cf. [40, §14]). For the second case we have to resort to the existence theorem
of Luna. The general case can be reduced to those two basic cases.

We first describe a locally closed subvariety of x “ pX,wq following [51, §18]. The case
for S is similar, following [51, §7]. Let pX,wq be as above. Then we have an orthogonal
decomposition W1 ‘ W2. Denote r “ dim W2 ě 1. We define a closed subvariety Ξ of
UpW qˆW consisting of pY, uq such that u, Y u, ..., Y r´1u span W2. In particular, a semisimple
x “ pX,wq belongs to Ξ. In [51, §18] Rallis and Schiffmann have defined an isomorphism of
varieties

ι1 : Ξ Ñ pUpW1q ˆW1q ˆ pUpW2q ˆW2qrs(B.2)

whose inverse is defined as follows. According to the decomposition W1 ‘W2 we may write
Y as

ˆ

Y11 Y12

Y21 Y22

˙

.

Then Y12 P HompW2,W1q. Define u1 “ Y12Y
r´1u PW1. Then ι´1

1 maps pY, uq to ppY11, u
1q, pY22, uqq.

It is then easy to see that Y iu “ Y i
22u P W2 for i “ 0, 1, ..., r ´ 1. Therefore pX22, uq is a

regular semisimple element. It is not hard to see that this defines an isomorphism. Moreover
it is equivariant under the action of UpW1q ˆ UpW2q: on the left hand side the action is the
restriction of that of UpW q to the subgroup; on the right hand side the action is the product
of the action of the two unitary groups UpWiq on UpWiq ˆWi. Then the morphism ι induces
a morphism between the categorical quotients

ι71 : pUpW1q ˆW1q{{UpW1q ˆ pUpW2q ˆW2qrs{{UpW2q Ñ pUpW q ˆW q{{UpW q.

Similarly, we have morphisms still denoted by ι1 and ι71 in the general linear case S. And we
have an equivalent version for the restriction of the adjoint action of GLn`1,F on gln`1,F to
GLn,F . We describe the analogous construction for this. Let x P gln`1,F be semisimple given
by (B.1) and denote by r “ dim U2 “ dim V2. Without loss of generality, we may assume
U2 “ F r embedded into Fn by sending u to p0, ..., 0, uq. Similarly for V2, U1, V1. Then we
define a closed subvariety Ξ consisting of

y “

ˆ

Y u1

v1 d1

˙

(B.3)
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such that u1, Y u1, ..., Y nu1 span U2 and v1, v1Y, ..., v1Y n span V2. Then similarly we have an
isomorphism ([51, §7]):

ι1 : pgln´r,F ˆ F
n´r ˆ Fn´rq ˆ pglr,F ˆ F

r ˆ Frqrs ˆ F Ñ Ξ(B.4)

such that ι´1 maps y to ppY11, Y12Y
r´1

22 u, vY r´1
22 Y21q, pY22, u, vq, dq. It also induces a morphism

still denoted by

ι71 : pgln´r ˆ F
n´r ˆ Fn´rq{{GLn´r ˆ pglr ˆ F

r ˆ Frqrs{{GLr ˆ F Ñ gln`1{{GLn.

Lemma B.1. The morphism ι71 is étale for both gln`1 (equivalently, Sn`1) and UpW q ˆW .

Proof. We will use the coordinates described earlier for these categorical quotients involved in
the morphism ι71. By Jacobian criterion for étaleness, it suffices to show that the Jacobian of

ι71 is non-zero everywhere. Indeed we will show the Jacobian is a non-zero constant. Therefore
it suffices to compute the Jacbobian over the algebraic closure. In particular, it suffices to
consider the equivalent question for the GLn,F -action on gln`1,F . Note that the Jacobian is a

regular function on the source of the morphism ι71. It is then enough to show that it is a non-
zero constant on a Zariski open subset. Recall that by Lemma 3.1, the categorical quotient
gln`1,F {{GLn,F is given by

SpecpF rα1, ..., αn`1, β1, β2, ..., βnsq,

where the invariants are defined by (3.4)

αi “ tr ^i x, βj “ exje˚, x P gln`1,F .

Another choice of invariants is given by (3.4) so that we may also identify the categorical
quotient gln`1,F {{GLn,F as

SpecpF rα11, ..., α
1
n, d, β

1
1, ..., β

1
nsq,

where
α1i “ tr ^i X, β1j “ vXj´1u,

where x is as in (B.1). In particular, the Jacobian of the isomorphism

ψ “ ψn : SpecpF rα11, ..., α
1
n, d, β

1
1, ..., β

1
nsq Ñ SpecpF rα1, ..., αn`1, β1, β2, ..., βnsq

is a nonzero constant

Bpα1, ..., αn`1, β1, β2, ..., βnq

Bpα11, ..., α
1
n, d, β

1
1, ..., β

1
nq

“ κn P F
ˆ.(B.5)

To indicate the dependence on n we will write the invariants as αipnq, βjpnq etc..
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We choose an auxiliary open subvariety of gln`1 consisting of strongly regular elements in
the sense of Jacquet–Rallis [39]. More precisely they are in the GLn,F -orbits of elements of
the form

x “ xpa1, ..., an`1, c1, ..., cnq :“

¨

˚

˚

˚

˚

˝

a1 1
c1 a2 1

... ...
cn´1 an 1

cn an`1

˛

‹

‹

‹

‹

‚

, ai P F, cj P F
ˆ.

All such x’s with an`1 “ 0 form a locally closed subvariety denoted by Θn of gln`1,F . Note
that dim Θn “ 2n. For d P F , let δnpdq be the matrix with only non-zero entry d at the
position pn ` 1, n ` 1q. For px, dq P Θn ˆ F , taking invariants αi, βj of x ` δnpdq yields a
morphism with Zariski dense image:

ξ “ ξn : Θn ˆ F Ñ SpecpF rα1, ..., αn`1, β1, β2, ..., βnsq.

Then we claim that the Jacobian of ξn is given by

Bpα1, ..., αn, d, β1, ..., βnq

Bpa1, ..., an ` 1, c1..., cnq
“ p´1qnpn´1q{2κ1κ2...κnc2c

2
3...c

n´1
n .(B.6)

We prove (B.6) by induction on n. It is easy to very this for n “ 1. Now for n ą 1, we
may write ξn “ ξ1n ˝ ψn. As d “ an`1, we have

Bpα11, ..., α
1
n, d, β

1
1, ..., β

1
nq

Bpa1, ..., an`1, c1..., cnq
“
Bpα11, ..., α

1
n, β

1
1, ..., β

1
nq

Bpa1, ..., an, c1..., cnq
.

Note that α1ipnq “ αipn´ 1q and for x P Θn, β11pnqpxq “ cn and

β1jpnqpxq “ cnβj´1pn´ 1qpXq, j ě 2,

since p0, ..., 0, cnq “ cnen. Here X is as in (B.1). This gives us

Bpα11, ..., α
1
n, β

1
1, ..., β

1
nq

Bpa1, ..., an, c1..., cnq
“
Bpα11, ..., α

1
n, β

1
1, ..., β

1
n´1q

Bpa1, ..., an, c1..., cn´1q

which is equal to

p´1qn´1cn´1
n

Bpα1pn´ 1q, ..., αnpn´ 1q, β1pn´ 1q, ..., βn´1pn´ 1qq

Bpa1, ..., an, c1..., cn´1q
.

By induction hypothesis, the Jacobian of ξ1n is:

p´1qnpn´1q{2κ1κ2...κn´1c2c
2
3...c

n´1
n .

Together with the Jacobian of ψn (B.5), we have proved (B.6).
Now we return to the morphism ι71. We have an obvious isomorphism

φ : Θn´r ˆΘr ˆ F Ñ Θn ˆ F,
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which sends the triple

pxpa1, .., an´r, 0, c1, ..., cn´rq, xpan´r`1, .., an, 0, cn´r`1, ..., cnq, dq

to xpa1, .., an`1, c1, ..., c
1
n´r, cn´r`1, ..., cnq with

an`1 “ d, c1n´r “ cn´r

r
ź

i“1

cn´r`i.

We have the product

ξn´r,r : Θn´r ˆΘr ˆ F Ñ pgln´r ˆ F
n´r ˆ Fn´rq{{GLn´r ˆ pglr ˆ F

r ˆ Frqrs{{GLr ˆ F.

It is to easy to see that the following diagram commutes:

Θn´r ˆΘr ˆ F
φ //

ξn´r,r
��

Θn ˆ F

ξn
��

pgln´r ˆ F
n´r ˆ Fn´rq{{GLn´r ˆ pglr ˆ F

r ˆ Frqrs{{GLr ˆ F // gln`1{{GLn

Then the Jacobian of ι71 restricted to the image of ξn´r,r is equal to the ratio of the Jacobian
of ξn over the product of that of ξn´r,r and φ. By (B.6), we obtain this ratio is a non-zero
constant times

c2c
3
3...c

n´1
n

c2c2
3...pcn´r

śr
i“1 cn´r`iq

n´r´1 ¨ cn´r`2c2
n´r`3...c

r´1
n ¨

śr
i“1 cn´r`i

“ 1.

This shows that the Jacobian of ι71 is a non-zero constant on a Zariski dense subset and hence

itself a non-zero constant on the source of ι71. This completes the proof that ι71 is étale.

The construction of étale Luna slices. We now refine the morphism ι1 defined by (B.2)
and (B.4). We consider the semisimple element x “ pX,wq in the unitary case. Then X11 is
semisimple in the usual sense. Therefore we may consider the Lie algebra UpW1qX11 of the
stabilizer UpW1qX11 and an open subvariety UpW1q

1
X11

of UpW1qX11 consisting of those Y such
that (cf. [40, 14.5])

detpadpY q;UpW1q{UpW1qX11q ‰ 0.(B.7)

To simplify notations, for UpV q we denote

V “ UpW q ˆW, Vx “ pUpW1qX11 ˆW1q ˆ pUpW2q ˆW2q,(B.8)

and

H “ UpW q, Hi “ UpWiq, Hx “ UpW1qX11 ,(B.9)
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where the last group is isomorphic to the stabilizer of x. Set

V 1x “ pUpW1q
1
X11

ˆW1q ˆ pUpW2q ˆW2qrs.(B.10)

Then x P V 1x. Let ι2 be the restriction of ι1 to V 1x. Then the morphism ι2 is Hx-equivariant
and it induces a morphism

ι72 : V 1x{{Hx ˆH2 Ñ V{{H.(B.11)

Note that the morphism ι2 also induces a morphism

ι : H ˆpHxˆH2q V
1
x Ñ V(B.12)

by sending ph, xq to h ¨ ι2pxq. Similar construction applies to gln`1 (equivalently, S).

Lemma B.2. The morphism ι72 is étale for both gln`1 (equivalently, S) and UpV q.

Proof. By Lemma, it suffices to show that the morphism

pUpW1q
1
X11

ˆW1q{{UpW1qX11 Ñ pUpW1q ˆW1q{{UpW1q

is étale. It is not hard to show that the Jacobian of this morphism at the image of pY, uq P
UpW1q

1
X11

ˆW1 is given by, up to a sign:

detpadpY q;UpW1q{UpW1qX11q.

This is non-zero by the definition of UpW1q
1
X11

.

Lemma B.3. The morphism ι is étale.

Proof. We show this in the unitary case. It suffices to show that the differential dι at p1, yq
induces an isomorphism between the tangent spaces. We first assume that X11 is a scaler.
Then Hx “ H1. Suppose y “ pY, uq P Vx. Then it is not hard to see that we have for
∆Y “ diagp∆Y11,∆Y22q,∆u “ p∆u1,∆u2q,

ι2pY `∆Y, u`∆uq “ ιpY, uq `∆ι2pY, uq ` higher terms,

where

∆ι2pY, uq :“

ˆ

∆Y11 φ∆u1

¨ ¨ ¨ ∆Y22

˙

,

where the part “¨ ¨ ¨ ” is determined by the Hermitian condition, and φ∆u1 P HompW2,W1q is
the homomorphism that sends Y i

22u2 to 0 for i “ 0, 1, ..., r ´ 2 and Y r´1
22 u2 to ∆u1.

Then the differential dι at p1, yq is given by

dι : UpW q ˆUpW1qX11
ˆUpW2q Vx Ñ V

p∆X, p∆Y,∆uqq ÞÑ pr∆X,diagpY11, Y22qs `∆ι2pY, uq,∆u2 `∆X ¨ u2q.

69



Here the left hand side means the quotient of pUpW qˆVxq{UpW1qX11 ˆUpW2q. By comparing
the dimension, it suffices to show that dι is injective. Suppose that dιp∆X, p∆Y,∆uqq “ 0.
By the action of pUpW q ˆ Vxq{UpW1qX11 ˆ UpW2q, we may assume that

∆X “

ˆ

0 φ
... 0

˙

, φ P HomEpW2,W1q.

Then we need to show that φ “ 0 and p∆Y,∆uq “ 0. From the diagonal blocks, it is easy to
see that ∆Y “ 0. Note that now we have ∆X ¨u2 “ φpu2q PW1. Therefore ∆u2`∆X ¨u2 “ 0
implies that both ∆u2 “ 0 and φpu2q “ 0. Now we use the condition from the off-diagonal
block to obtain

Y11φ´ φY22 ` φ∆u1 “ 0 P HomEpW2,W1q.

Since pY22, u2q is regular semisimple, the vectors u2, Y22u2, ..., Y
r´1

22 u2 form a basis of W2. We
apply the above homomorphism to Y i

22u2:

φY i`1
22 u2 “ Y11φY

i
22u2 ` φ∆u1Y

i
22u2.

Since φu2 “ 0, we may show that φY i`1
22 u2 “ 0 recursively. This shows that φ “ 0 P

HompW2,W1q. This completes the proof when X11 is a scalar.
Now we consider a general semisimple X11, and Hx » UpW1qX11 . Then the assertion

follows if we show that the following analogous morphism is étale

H1 ˆHx pUpW1q
1
X11

ˆW1q Ñ UpW1q ˆW1.

Similar argument to the above works and we omit the details.

Lemma B.4. For both gln`1,F (equivalently, S) and UpV q, the following diagram is cartisian

H ˆpHxˆH2q V 1x

��

ι // V

π

��
V 1x{{pHx ˆH2q

ι72 // V{{H.

Proof. Thanks to the previous lemmas, now the proof is similar to that of [40, Lemma 14.1].
We need to show that the induced morphism

γ : H ˆpHxˆH2q V
1
x Ñ V 1x{{pHx ˆH2q ˆV{{H V

is an isomorphism. It suffices to show that in an algebraic closure the induced map on the
geometric points is bijective. From this we see that the question becomes equivalent for both
gln`1 (equivalently, S) and UpW q. To simplify exposition, we consider the unitary case.

Actually the bijectivity holds for any field as we now show. To show the surjectivity, we
may write an element V 1x{{pHxˆH2qˆV{{H V as ppY 1, u1q, pY, uqq where pY 1, u1q P V 1x is abused to

denote its image in the quotient. Then ι72pY
1, u1q “ πpY, uq. This implies that the fundamental

matrix of u, Y u, ..., Y r´1u is equal to that of u12, Y
1

22u
1
2, ..., Y

1r´1
22 u12, which is non-degenerate.
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By Witt’s theorem there exists an h P H such that hpY
1i

22u
1
2q “ Y iu for 0 ď i ď r´ 1. We may

thus assume that u “ u12, Y22 “ Y 122. The rest follows from [40, Lemma 14.1].
To show the injectivity, without loss of generality it suffices to show that if

γp1, yq “ γph, zq,

then h P HxˆH2 and y “ hz. It suffices to show h P HxˆH2 since the second assertion follows
from this. Denote y “ pY, uq and z “ pZ,wq. Then h obviously preserves the subspace W2

and hence W1, too. It follows that h P H1 ˆH2. The rest follows from [40, Lemma 14.1].

Theorem B.5. Let x P V be a semisimple element and we use the notations from (B.8) to
(B.10). Choose an étale Luna slice Z2 of pX22, wq (which is H2-regular semisimple) for the
action of H2 on UpW2q ˆW2. Then the image of

`

UpW1q
1
X11

ˆW1

˘

ˆ Z2 under ι2 defines an
étale Luna slice at x.

Proof. The space Vx in (B.8) is (isomorphic to) the sliced representation at x. Then the result
follows from Lemma B.3 and Lemma B.4.

Remark 17. One may make the étale slice for a regular semisimple element more explicit by
using the explicit section of the categorical quotient in Lemma 3.1.

Remark 18. Obviously, this also gives us a way to choose an analytic Luna slice once we choose
an analytic Luna slice for the H2-regular semisimple element pX22, wq.
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